Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKavanagh, R. D.
dc.contributor.authorVidotto, A. A.
dc.contributor.authorÓ. Fionnagáin, D.
dc.contributor.authorBourrier, V.
dc.contributor.authorFares, R.
dc.contributor.authorJardine, M.
dc.contributor.authorHelling, Ch
dc.contributor.authorMoutou, C.
dc.contributor.authorLlama, J.
dc.contributor.authorWheatley, P. J.
dc.date.accessioned2019-03-26T12:30:09Z
dc.date.available2019-03-26T12:30:09Z
dc.date.issued2019-06
dc.identifier258319462
dc.identifier6276446e-4e09-4112-a976-8a98733ae1b3
dc.identifier85064112096
dc.identifier000474880400007
dc.identifier.citationKavanagh , R D , Vidotto , A A , Ó. Fionnagáin , D , Bourrier , V , Fares , R , Jardine , M , Helling , C , Moutou , C , Llama , J & Wheatley , P J 2019 , ' MOVES - II. Tuning in to the radio environment of HD189733b ' , Monthly Notices of the Royal Astronomical Society , vol. 485 , no. 4 , pp. 4529–4538 . https://doi.org/10.1093/mnras/stz655en
dc.identifier.issn0035-8711
dc.identifier.otherBibCode: 2019MNRAS.tmp..632K
dc.identifier.otherORCID: /0000-0002-1466-5236/work/57821892
dc.identifier.urihttps://hdl.handle.net/10023/17373
dc.description.abstractWe present stellar wind modelling of the hot Jupiter host HD189733, and predict radio emission from the stellar wind and the planet, the latter arising from the interaction of the stellar wind with the planetary magnetosphere. Our stellar wind models incorporate surface stellar magnetic field maps at the epochs 2013 June/July, 2014 September, and 2015 July as boundary conditions. We find that the mass-loss rate, angular momentum loss rate, and open magnetic flux of HD189733 vary by 9 per cent, 40 per cent, and 19 per cent over these three epochs. Solving the equations of radiative transfer, we find that from 10 MHz–100 GHz the stellar wind emits fluxes in the range of 10−3–5 μJy, and becomes optically thin above 10 GHz. Our planetary radio emission model uses the radiometric Bode’s law, and neglects the presence of a planetary atmosphere. For assumed planetary magnetic fields of 1–10 G, we estimate that the planet emits at frequencies of 2–25 MHz, with peak flux densities of 102 mJy. We find that the planet orbits through regions of the stellar wind that are optically thick to the emitted frequency from the planet. As a result, unattenuated planetary radio emission can only propagate out of the system and reach the observer for 67 per cent of the orbit for a 10 G planetary field, corresponding to when the planet is approaching and leaving primary transit. We also find that the plasma frequency of the stellar wind is too high to allow propagation of the planetary radio emission below 21 MHz. This means a planetary field of at least 8 G is required to produce detectable radio emission.
dc.format.extent10
dc.format.extent17537579
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen
dc.subjectMHDen
dc.subjectStars: individual (HD189733)en
dc.subjectStars: low-massen
dc.subjectStars: planetary systemsen
dc.subjectStars: winds, outflowsen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectAstronomy and Astrophysicsen
dc.subjectSpace and Planetary Scienceen
dc.subjectNDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleMOVES - II. Tuning in to the radio environment of HD189733ben
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1093/mnras/stz655
dc.description.statusPeer revieweden
dc.identifier.urlhttp://adsabs.harvard.edu/abs/2019MNRAS.tmp..632Ken
dc.identifier.grantnumberST/R00824/1en
dc.identifier.grantnumberST/M001296/1en


This item appears in the following Collection(s)

Show simple item record