St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected zirconium MOF with the the-i topology, and its reversible lattice shift

Thumbnail
View/Open
STA_26_18_01_17_non_highlighted.pdf (5.387Mb)
Date
23/03/2018
Author
Bumstead, Alice
Cordes, David B.
Dawson, Daniel M.
Chakarova, Kristina K.
Mihaylov, Mihail Y.
Hobday, Claire L.
Düren, Tina
Hadjiivanov, Konstantin
Slawin, Alexandra M. Z.
Ashbrook, Sharon E.
Prasad, Ram R. R.
Wright, Paul A.
Funder
European Commission
EPSRC
The Royal Society
Grant ID
608490
EP/L016419/1
WM150021
Keywords
Microporous zirconium MOF
Lattice interpenetration
Reversible lattice shift
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4',4"-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im-3m symmetry compared with the Pm-3m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr6 nodes leaving coordinatively unsaturated Zr4+ sites, as shown by IR spectroscopy using CO and CD3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm3 g−1 while CO2 adsorption at 196 K reaches 300 cm3 STP g−1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption.
Citation
Bumstead , A , Cordes , D B , Dawson , D M , Chakarova , K K , Mihaylov , M Y , Hobday , C L , Düren , T , Hadjiivanov , K , Slawin , A M Z , Ashbrook , S E , Prasad , R R R & Wright , P A 2018 , ' Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected zirconium MOF with the the-i topology, and its reversible lattice shift ' , Chemistry - A European Journal , vol. Early View . https://doi.org/10.1002/chem.201705136
Publication
Chemistry - A European Journal
Status
Peer reviewed
DOI
https://doi.org/10.1002/chem.201705136
ISSN
0947-6539
Type
Journal article
Rights
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/chem.201705136
Description
The authors acknowledge the support of the EPSRC/St Andrews Criticat CDT (RRRP, PAW) and the European Community Seventh Framework Program (FP7/2007-2013) number 608490 (project M4CO2) (KKC, MYM, KIH, PAW). SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The research data (and/or materials) supporting this publication can be accessed at DOI: http://dx.doi.org/10.17630/6ffeed8a-e75f-4648-968f-3ed32a94e9a0.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17353

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter