St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An ionic limit to life in the deep subsurface

Thumbnail
View/Open
Payler_2019_FM_ioniclimit_CC.pdf (8.845Mb)
Date
12/03/2019
Author
Payler, Samuel J.
Biddle, Jennifer F.
Sherwood Lollar, Barbara
Fox-Powell, Mark G.
Edwards, Thomas
Ngwenya, Bryne T.
Paling, Sean M.
Cockell, Charles S.
Keywords
Evaporite
Salt
Habitability
Astrobiology
Subsurface
GE Environmental Sciences
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The physical and chemical factors that can limit or prevent microbial growth in the deep subsurface are not well defined. Brines from an evaporite sequence were sampled in the Boulby Mine, United Kingdom between 800 and 1300 m depth. Ionic, hydrogen and oxygen isotopic composition were used to identify two brine sources, an aquifer situated in strata overlying the mine, and another ambiguous source distinct from the regional groundwater. The ability of the brines to support microbial replication was tested with culturing experiments using a diversity of inocula. The examined brines were found to be permissive for growth, except one. Testing this brine’s physicochemical properties showed it to have low water activity and to be chaotropic, which we attribute to the high concentration of magnesium and chloride ions. Metagenomic sequencing of the brines that supported growth showed their microbial communities to be similar to each other and comparable to those found in other hypersaline environments. These data show that solutions high in dissolved ions can shape the microbial diversity of the continental deep subsurface biosphere. Furthermore, under certain circumstances, complex brines can establish a hard limit to microbial replication in the deep biosphere, highlighting the potential for subsurface uninhabitable aqueous environments at depths far shallower than a geothermally-defined limit to life.
Citation
Payler , S J , Biddle , J F , Sherwood Lollar , B , Fox-Powell , M G , Edwards , T , Ngwenya , B T , Paling , S M & Cockell , C S 2019 , ' An ionic limit to life in the deep subsurface ' , Frontiers in Microbiology , vol. 10 , 00426 . https://doi.org/10.3389/fmicb.2019.00426
Publication
Frontiers in Microbiology
Status
Peer reviewed
DOI
https://doi.org/10.3389/fmicb.2019.00426
ISSN
1664-302X
Type
Journal article
Rights
Copyright © 2019 Payler, Biddle, Sherwood Lollar, Fox-Powell, Edwards, Ngwenya, Paling and Cockell. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Description
SP was supported by EPSRC. We would also like to acknowledge the Deep Carbon Observatory for partly funding the metagenome sequencing and Natural Sciences and Engineering Council of Canada (NSERC) funding to BS Lollar for funding the fluid isotope work (Discovery Grant No. 453949).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17343

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter