Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDavison, Ben
dc.contributor.authorSole, Andrew
dc.contributor.authorLivingstone, Stephen
dc.contributor.authorCowton, Tom
dc.contributor.authorNienow, Peter
dc.date.accessioned2019-02-21T12:30:05Z
dc.date.available2019-02-21T12:30:05Z
dc.date.issued2019-02-21
dc.identifier.citationDavison , B , Sole , A , Livingstone , S , Cowton , T & Nienow , P 2019 , ' The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet ' , Frontiers in Earth Sciences , vol. 7 , 10 . https://doi.org/10.3389/feart.2019.00010en
dc.identifier.issn1863-4621
dc.identifier.otherPURE: 257677823
dc.identifier.otherPURE UUID: 1f679825-a690-418f-843b-c8378f8a7465
dc.identifier.otherScopus: 85064147222
dc.identifier.otherWOS: 000467221000001
dc.identifier.urihttps://hdl.handle.net/10023/17121
dc.descriptionFunding: The Scottish Alliance for Geoscience, Environment and Society (SAGES) provided financial support for this work in the form of a studentship for BJD.en
dc.description.abstractCoupling between runoff, hydrology, basal motion and mass loss (‘hydrology-dynamics’) is a critical component of the Greenland Ice Sheet system. Despite considerable research effort, the mechanisms by which runoff influences ice dynamics and the net long-term (decadal and longer) dynamical effect of variations in the timing and magnitude of runoff delivery to the bed remain a subject of debate. We synthesise key research into land-terminating ice sheet hydrology-dynamics, in order to reconcile several apparent contradictions that have recently arisen as understanding of the topic has developed. We suggest that meltwater interaction with subglacial channels, cavities and deforming subglacial sediment modulates ice flow variability. Increasing surface runoff supply to the bed induces cavity expansion and sediment deformation, leading to early-melt season ice flow acceleration. In the ablation area, drainage of water at times of low runoff from high-pressure subglacial environments towards more efficient drainage pathways is thought to result in reductions in water pressure, ice-bed separation and sediment deformation, causing net slow-down on annual to decadal time-scales (ice flow self-regulation), despite increasing surface melt. Further inland, thicker ice, small surface gradients and reduced runoff supress efficient drainage development, and a small net increase in both summer and winter ice flow is observed. Predicting ice motion across land-terminating sectors of the ice sheet over the 21st century is confounded by inadequate understanding of the processes and feedbacks between runoff and subglacial motion. However, if runoff supply increases, we suggest that ice flow in marginal regions will continue to decrease on annual and longer timescales, principally due to (i) increasing drainage system efficiency in marginal areas, (ii) progressive depression of basal water pressure and (iii) thinning-induced lowering of driving stresses. At higher elevations, we suggest that minor year-on-year ice flow acceleration will continue and extend further into the interior where self-regulation mechanisms cannot operate and if surface-to-bed meltwater connections form. Based on current understanding, we expect that ice flow deceleration due to the seasonal development of efficient drainage beneath the land-terminating margins of the Greenland Ice Sheet will continue to regulate its future mass loss.
dc.format.extent24
dc.language.isoeng
dc.relation.ispartofFrontiers in Earth Sciencesen
dc.rightsCopyright © 2019 Davison, Sole, Livingstone, Cowton and Nienow. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en
dc.subjectSubglacial hydrologyen
dc.subjectIce dynamicsen
dc.subjectLand-terminatingen
dc.subjectSupraglacial lakesen
dc.subjectGreenland ice sheeten
dc.subjectGlaciersen
dc.subjectG Geography (General)en
dc.subjectT-NDASen
dc.subject.lccG1en
dc.titleThe influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheeten
dc.typeJournal itemen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Geography & Sustainable Developmenten
dc.contributor.institutionUniversity of St Andrews. Bell-Edwards Geographic Data Instituteen
dc.identifier.doihttps://doi.org/10.3389/feart.2019.00010
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record