St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of the fast and promiscuous macrocyclase from plant PCY1 enables the use of simple substrates

Thumbnail
View/Open
Ludewig_2018_Characterization_PCY1_ACSChemBio_AAM.pdf (1.201Mb)
Date
16/03/2018
Author
Ludewig, Hannes
Czekster, Clarissa M.
Oueis, Emilia
Munday, Elizabeth S.
Arshad, Mohammed
Synowsky, Silvia Anna
Bent, Andrew F.
Naismith, James H.
Funder
BBSRC
European Research Council
Grant ID
BB/K015508/1
NCB-TNT
Keywords
QD Chemistry
QH301 Biology
DAS
Metadata
Show full item record
Abstract
Cyclic ribosomally derived peptides possess diverse bioactivities and are currently of major interest in drug development. However, it can be chemically challenging to synthesize these molecules, hindering the diversification and testing of cyclic peptide leads. Enzymes used in vitro offer a solution to this; however peptide macrocyclization remains the bottleneck. PCY1, involved in the biosynthesis of plant orbitides, belongs to the class of prolyl oligopeptidases and natively displays substrate promiscuity. PCY1 is a promising candidate for in vitro utilization, but its substrates require an 11 to 16 residue C-terminal recognition tail. We have characterized PCY1 both kinetically and structurally with multiple substrate complexes revealing the molecular basis of recognition and catalysis. Using these insights, we have identified a three residue C-terminal extension that replaces the natural recognition tail permitting PCY1 to operate on synthetic substrates. We demonstrate that PCY1 can macrocyclize a variety of substrates with this short tail, including unnatural amino acids and nonamino acids, highlighting PCY1’s potential in biocatalysis.
Citation
Ludewig , H , Czekster , C M , Oueis , E , Munday , E S , Arshad , M , Synowsky , S A , Bent , A F & Naismith , J H 2018 , ' Characterization of the fast and promiscuous macrocyclase from plant PCY1 enables the use of simple substrates ' , ACS Chemical Biology , vol. 13 , no. 3 , pp. 801–811 . https://doi.org/10.1021/acschembio.8b00050
Publication
ACS Chemical Biology
Status
Peer reviewed
DOI
https://doi.org/10.1021/acschembio.8b00050
ISSN
1554-8929
Type
Journal article
Rights
© 2018, American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acschembio.8b00050
Description
H.L. is funded by the George and Stella Lee Scholarship and EPSRC. This project was funded by the European Research Council project 339367 NCB-TNT and by the BBSRC (J.H.N.). E.S.M. and M.A. are funded by EPSRC. S.A.S. is funded by BSRC mass spec facility.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16948

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter