St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the molecular origin of charge separation at the donor-acceptor interface

Thumbnail
View/Open
Sini_AEM_Draft_SI_Re_sub_final.pdf (2.957Mb)
Date
04/2018
Author
Sini, Gjergji
Schubert, Marcel
Risko, Chad
Roland, Steffen
Lee, Olivia
Chen, Zhihua
Richter, Thomas
Dolfen, Daniel
Coropceanu, Veaceslav
Ludwigs, Sabine
Scherf, Ullrich
Facchetti, Antonio
Fréchet, Jean
Neher, Dieter
Keywords
Polymer solar cells
Organic photovoltaics
Photocurrent generation
Donor-acceptor interfaces
Nonfullerene acceptors
Energy gradients
Driving force
Polarization
Geometrical deformations
QC Physics
QD Chemistry
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing but urgently needed to direct further material improvements. Here we use a combined experimental and theoretical approach to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. We use model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers and perform a detailed density functional theory (DFT) investigation. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.
Citation
Sini , G , Schubert , M , Risko , C , Roland , S , Lee , O , Chen , Z , Richter , T , Dolfen , D , Coropceanu , V , Ludwigs , S , Scherf , U , Facchetti , A , Fréchet , J & Neher , D 2018 , ' On the molecular origin of charge separation at the donor-acceptor interface ' , Advanced Energy Materials , vol. 8 , no. 12 , 1702232 . https://doi.org/10.1002/aenm.201702232
Publication
Advanced Energy Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/aenm.201702232
ISSN
1614-6832
Type
Journal article
Rights
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/aenm.201702232
Description
C.R. thanks the University of Kentucky Vice President for Research and the Department of the Navy, Office of Naval Research (Award No. N00014-16-1-2985) for support. V.C. thanks the Department of the Navy, Office of Naval Research (Awards Nos. N00014-14-1-0580 and N00014-16-1-2520) for support. M.S. and D.D. acknowledge funding by the German Science Foundation through the SPP 1355 “Elementary Processes in Organic Photovoltaics.” The research data supporting this paper can be accessed at https://doi.org/10.17630/a6935caf-f7ed-48b2-b131-68ae72a26629.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16910

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter