Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHolroyd, Leo F.
dc.contributor.authorBuehl, Michael
dc.contributor.authorGaigeot, Marie-Pierre
dc.contributor.authorvan Mourik, Tanja
dc.contributor.editorJenkins, Samantha
dc.contributor.editorKirk, Steven
dc.contributor.editorMaruani, Jean
dc.contributor.editorBrandas, Erkki
dc.date.accessioned2019-01-14T17:30:10Z
dc.date.available2019-01-14T17:30:10Z
dc.date.issued2019-01-01
dc.identifier252912294
dc.identifier969e090c-3330-4043-8786-e43fcda9bd65
dc.identifier85048708983
dc.identifier000500361700007
dc.identifier.citationHolroyd , L F , Buehl , M , Gaigeot , M-P & van Mourik , T 2019 , Thermodynamics of 5-bromouracil tautomerisation from first-principles molecular dynamics simulations . in S Jenkins , S Kirk , J Maruani & E Brandas (eds) , Quantum Systems in Physics, Chemistry and Biology - Theory, Interpretation, and Results . Advances of Quantum Chemistry , vol. 78 , Academic Press/Elsevier , pp. 109-128 . https://doi.org/10.1016/bs.aiq.2018.05.001en
dc.identifier.isbn9780128160848
dc.identifier.issn0065-3276
dc.identifier.otherORCID: /0000-0002-1095-7143/work/52888695
dc.identifier.otherORCID: /0000-0001-7683-3293/work/57088476
dc.identifier.urihttps://hdl.handle.net/10023/16860
dc.descriptionThe authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) UK National Service for Computational Chemistry Software (NSCCS); from GENCI (Grand équipement national de calcul intensif); and from CINES (Centre informatique national de l’enseignement supérieur). LFH and TvM gratefully acknowledge support from the HPC-EUROPA2 project with the support of the European Commission - Capacities Area - Research Infrastructures. LFH is grateful to the EPSRC for studentship support through the Doctoral Training Account scheme (grant code EP/K503162/1).en
dc.description.abstractWe modelled the driving force for aqueous keto-to-enol tautomerisation of 5-bromouracil, a mutagenic thymine analogue, by first-principles molecular dynamics simulations with thermodynamic integration. Using interatomic distance constraints to model the water-assisted (de)protonation of 5-bromouracil in a periodic water box, we show that the free energy for its enolisation is lower than that of the parent compound, uracil, by around 3.0 kcal/mol (BLYP-D2 level), enough to significantly alter the relative tautomeric ratios. Assuming the energetic difference also holds in the cell, this finding is evidence for the “rare tautomer” hypothesis of 5-bromouracil mutagenicity (and, possibly, that of other base analogues).
dc.format.extent741863
dc.language.isoeng
dc.publisherAcademic Press/Elsevier
dc.relation.ispartofQuantum Systems in Physics, Chemistry and Biology - Theory, Interpretation, and Resultsen
dc.relation.ispartofseriesAdvances of Quantum Chemistryen
dc.subjectDensity functional theoryen
dc.subjectNucleobasesen
dc.subjectSolvation effectsen
dc.subjectMutagenesisen
dc.subjectCPMDen
dc.subjectBromouracilen
dc.subjectQD Chemistryen
dc.subject.lccQDen
dc.titleThermodynamics of 5-bromouracil tautomerisation from first-principles molecular dynamics simulationsen
dc.typeBook itemen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1016/bs.aiq.2018.05.001
dc.identifier.urlhttps://www.sciencedirect.com/bookseries/advances-in-quantum-chemistry/vol/78/suppl/Cen


This item appears in the following Collection(s)

Show simple item record