Show simple item record

Files in this item


Item metadata

dc.contributor.authorUji, Makoto
dc.contributor.authorWilson, Ross
dc.contributor.authorFrancis, Susan
dc.contributor.authorMullinger, Karen
dc.contributor.authorMayhew, Stephen
dc.identifier.citationUji , M , Wilson , R , Francis , S , Mullinger , K & Mayhew , S 2018 , ' Exploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humans ' , Human Brain Mapping , vol. 39 , no. 4 , pp. 1673-1687 .
dc.identifier.otherPURE: 252050958
dc.identifier.otherPURE UUID: 18a19eb4-5e24-4eb8-9186-ddfb7a2cea0d
dc.identifier.otherScopus: 85040680289
dc.identifier.otherORCID: /0000-0002-9445-6353/work/40535305
dc.descriptionThe authors thank the Birmingham Nottingham Strategic Collaboration Fund for supporting this work and MU and a University of Nottingham Anne McLaren Fellowship for funding KJM and a University of Birmingham Fellowship for funding SDM.en
dc.description.abstractWe established an optimal combination of EEG recording during sparse multiband (MB) fMRI that preserves high-resolution, whole-brain fMRI coverage while enabling broad-band EEG recordings which are uncorrupted by MRI gradient artefacts (GAs). We first determined the safety of simultaneous EEG recording during MB fMRI. Application of MB factor = 4 produced <1°C peak heating of electrode/hardware during 20 min of GE-EPI data acquisition. However, higher SAR sequences require specific safety testing, with greater heating observed using PCASL with MB factor = 4. Heating was greatest in the electrocardiogram channel, likely due to it possessing longest lead length. We investigated the effect of MB factor on the temporal signal-to-noise ratio for a range of GE-EPI sequences (varying MB factor and temporal interval between slice acquisitions). We found that, for our experimental purpose, the optimal acquisition was achieved with MB factor = 3, 3mm isotropic voxels, and 33 slices providing whole head coverage. This sequence afforded a 2.25 s duration quiet period (without GAs) in every 3 s TR. Using this sequence, we demonstrated the ability to record gamma frequency (55–80 Hz) EEG oscillations, in response to right index finger abduction, that are usually obscured by GAs during continuous fMRI data acquisition. In this novel application of EEG-MB fMRI to a motor task, we observed a positive correlation between gamma and BOLD responses in bilateral motor regions. These findings support and extend previous work regarding coupling between neural and hemodynamic measures of brain activity in humans and showcase the utility of EEG-MB fMRI for future investigations.
dc.relation.ispartofHuman Brain Mappingen
dc.rights© 2017 Wiley Periodicals, Inc. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at
dc.subjectGamma-BOLD couplingen
dc.subjectGradient artefactsen
dc.subjectMultiband fMRIen
dc.subjectMultislice fMRIen
dc.subjectMotor gamma oscillationsen
dc.subjectRC0321 Neuroscience. Biological psychiatry. Neuropsychiatryen
dc.titleExploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humansen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Psychology and Neuroscienceen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record