Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorOswald, Matthew C W
dc.contributor.authorBrooks, Paul S.
dc.contributor.authorZwart, Maarten F.
dc.contributor.authorMukherjee, Amrita
dc.contributor.authorWest, Ryan J H
dc.contributor.authorGiachello, Carlo N G
dc.contributor.authorMorarach, Khomgrit
dc.contributor.authorBaines, Richard A.
dc.contributor.authorSweeney, Sean T.
dc.contributor.authorLandgraf, Matthias
dc.date.accessioned2019-01-11T16:30:05Z
dc.date.available2019-01-11T16:30:05Z
dc.date.issued2018-12-27
dc.identifier.citationOswald , M C W , Brooks , P S , Zwart , M F , Mukherjee , A , West , R J H , Giachello , C N G , Morarach , K , Baines , R A , Sweeney , S T & Landgraf , M 2018 , ' Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila ' , eLife , vol. 7 , e39393 . https://doi.org/10.7554/eLife.39393en
dc.identifier.issn2050-084X
dc.identifier.otherPURE: 257312507
dc.identifier.otherPURE UUID: f0b6c9fc-ff31-4376-a08f-000a47525e87
dc.identifier.otherScopus: 85059240135
dc.identifier.otherPubMed: 30540251
dc.identifier.otherORCID: /0000-0002-5073-8631/work/52572487
dc.identifier.urihttp://hdl.handle.net/10023/16845
dc.descriptionThis work was supported by BBSRC research grants (BB/IO1179X/1, BB/M002934/1) to ML, (BB/I012273/1, BB/M002322/1) to STS and (BB/N/014561/1) to RAB.en
dc.description.abstractReactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.
dc.format.extent27
dc.language.isoeng
dc.relation.ispartofeLifeen
dc.rightsCopyright © 2018, Oswald et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.en
dc.subjectD. melanogasteren
dc.subjectDJ-1en
dc.subjectDrosophilaen
dc.subjectNeuronen
dc.subjectNeuroscienceen
dc.subjectPlasticityen
dc.subjectROS (reactive oxygen species)en
dc.subjectSynapseen
dc.subjectRC0321 Neuroscience. Biological psychiatry. Neuropsychiatryen
dc.subjectQH301 Biologyen
dc.subjectNeuroscience(all)en
dc.subjectBiochemistry, Genetics and Molecular Biology(all)en
dc.subjectImmunology and Microbiology(all)en
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccRC0321en
dc.subject.lccQH301en
dc.titleReactive oxygen species regulate activity-dependent neuronal plasticity in Drosophilaen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Psychology and Neuroscienceen
dc.identifier.doihttps://doi.org/10.7554/eLife.39393
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record