St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dichomitus squalens partially tailors its molecular responses to the composition of solid wood

Thumbnail
View/Open
Daly_2018_EM_Dichomitussqualens_CC.pdf (398.9Kb)
Date
11/2018
Author
Daly, Paul
López, Sara Casado
Peng, Mao
Lancefield, Christopher S
Purvine, Samuel O
Kim, Young-Mo
Zink, Erika M
Dohnalkova, Alice
Singan, Vasanth R
Lipzen, Anna
Dilworth, David
Wang, Mei
Ng, Vivian
Robinson, Errol
Orr, Galya
Baker, Scott E
Bruijnincx, Pieter C A
Hildén, Kristiina S
Grigoriev, Igor V
Mäkelä, Miia R
de Vries, Ronald P
Keywords
QD Chemistry
QR Microbiology
DAS
Metadata
Show full item record
Abstract
White‐rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed‐wood forests containing both soft‐ and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi‐natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D‐NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G‐lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.
Citation
Daly , P , López , S C , Peng , M , Lancefield , C S , Purvine , S O , Kim , Y-M , Zink , E M , Dohnalkova , A , Singan , V R , Lipzen , A , Dilworth , D , Wang , M , Ng , V , Robinson , E , Orr , G , Baker , S E , Bruijnincx , P C A , Hildén , K S , Grigoriev , I V , Mäkelä , M R & de Vries , R P 2018 , ' Dichomitus squalens partially tailors its molecular responses to the composition of solid wood ' , Applied and Environmental Microbiology , vol. 20 , no. 11 , pp. 4141-4156 . https://doi.org/10.1111/1462-2920.14416
Publication
Applied and Environmental Microbiology
Status
Peer reviewed
DOI
https://doi.org/10.1111/1462-2920.14416
ISSN
0099-2240
Type
Journal article
Rights
Copyright © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
Description
PD was supported by a grant of the Netherlands Scientific Organization NWO 824.15.023 to RPdV. The Academy of Finland grant no. 308284 to MRM is acknowledged. Part of the research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at the Pacific Northwest National Laboratory in Richland, WA, USA. The work conducted by the U.S. Department of Energy Joint Genome Institute (JGI), was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE‐AC02‐05CH11231. CSL was supported by the CatchBio program.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16742

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter