Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorDusanowski
dc.contributor.authorMrowiński, P.
dc.contributor.authorSyperek, M.
dc.contributor.authorMisiewicz, J.
dc.contributor.authorSomers, A.
dc.contributor.authorHöfling, S.
dc.contributor.authorReithmaier, J. P.
dc.contributor.authorSȩk, G.
dc.date.accessioned2018-12-20T00:34:28Z
dc.date.available2018-12-20T00:34:28Z
dc.date.issued2017-12-18
dc.identifier.citationDusanowski , Mrowiński , P , Syperek , M , Misiewicz , J , Somers , A , Höfling , S , Reithmaier , J P & Sȩk , G 2017 , ' Confinement regime in self-assembled InAs/InAlGaAs/InP quantum dashes determined from exciton and biexciton recombination kinetics ' , Applied Physics Letters , vol. 111 , no. 25 , 253106 . https://doi.org/10.1063/1.5005971en
dc.identifier.issn0003-6951
dc.identifier.otherPURE: 252028392
dc.identifier.otherPURE UUID: 78bedbd3-a606-4fc4-991e-03c0b23eac7f
dc.identifier.otherScopus: 85039148522
dc.identifier.otherWOS: 000418648800034
dc.identifier.urihttps://hdl.handle.net/10023/16729
dc.descriptionThis research was supported by the National Science Center of Poland within Grant No. 2011/02/A/ST3/00152. Ł.D. acknowledges the financial support from the Foundation for Polish Science within the START fellowship. The experiments have partially been performed within the Wrocław University of Science and Technology laboratory infrastructure financed by the Polish Ministry of Science and Higher Education Grant No. 6167/IA/119/2012.en
dc.description.abstractThe exciton and biexciton confinement regimes in strongly anisotropic epitaxial InAs nanostructures called quantum dashes (QDashes) embedded in an In0.53Ga0.23Al0.24As matrix, which is lattice-matched to InP(001) substrate, have been investigated. For that purpose, we have performed low-temperature spatially and polarization-resolved photoluminescence and time-resolved photoluminescence measurements on a set of single QDashes. The main conclusions are drawn based on the experimentally obtained distribution of the ratio between the exciton and biexciton lifetimes. We have found that a majority of QDashes for which the abovementioned ratio falls into the range of 1.2 ± 0.1-1.6 ± 0.1 corresponds to the so called intermediate confinement regime, whereas for several cases, it is close to 1 or 2, suggesting reaching the conditions of weak and strong confinement, respectively. Eventually, we support this data with dependence of the lifetimes' ratio on the biexciton binding energy, implying importance of Coulomb correlations, which change significantly with the confinement regime.
dc.format.extent6
dc.language.isoeng
dc.relation.ispartofApplied Physics Lettersen
dc.rights© 2017 the Author(s). Published by AIP Publishing. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1063/1.5005971en
dc.subjectQC Physicsen
dc.subjectPhysics and Astronomy (miscellaneous)en
dc.subjectNDASen
dc.subject.lccQCen
dc.titleConfinement regime in self-assembled InAs/InAlGaAs/InP quantum dashes determined from exciton and biexciton recombination kineticsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1063/1.5005971
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-12-20


This item appears in the following Collection(s)

Show simple item record