Show simple item record

Files in this item


Item metadata

dc.contributor.authorLongcope, Dana
dc.contributor.authorUnverferth, John
dc.contributor.authorKlein, Courtney
dc.contributor.authorMcCarthy, Marika
dc.contributor.authorPriest, Eric
dc.identifier.citationLongcope , D , Unverferth , J , Klein , C , McCarthy , M & Priest , E 2018 , ' Evidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnection ' , Astrophysical Journal , vol. 868 , no. 2 , 148 .
dc.identifier.otherPURE: 257008832
dc.identifier.otherPURE UUID: bf0de268-96de-47a0-b770-afda5418c5ef
dc.identifier.otherBibtex: urn:1e93a4d2ee5283a2e243cbc54eb98f94
dc.identifier.otherWOS: 000452414800006
dc.identifier.otherORCID: /0000-0003-3621-6690/work/74117704
dc.descriptionThis work was supported partly by a grant from NASA's Heliophysics Supporting Research (HSR) program and partly by a grant from NSF/AGS's Research Experiences for Undergraduates (REU) program.en
dc.description.abstractCurrent sheets are believed to form in the wakes of erupting flux ropes and to enable the magnetic reconnection responsible for an associated flare. Multiwavelength observations of an eruption on 2017 September 10 show a long, linear feature widely taken as evidence of a current sheet viewed edge-on. The relation between the high-temperature, high-density plasma thus observed and any current sheet is not yet entirely clear. We estimate the magnetic field strength surrounding the sheet and conclude that approximately one-third of all flux in the active region was opened by the eruption. Subsequently decreasing field strength suggests that the open flux closed down over the next several hours through reconnection at a rate Mx s−1. We find in AIA observations evidence of downward-moving, dark structures analogous to either supra-arcade downflows, more typically observed above flare arcades viewed face-on, or supra-arcade downflowing loops, previously reported in flares viewed in this perspective. These features suggest that the plasma sheet is composed of the magnetic flux retracting after being reconnected high above the arcade. We model flux tube retraction following reconnection to show that this process can generate high densities and temperatures as observed in the plasma sheet. The retracting flux tubes reach their highest temperatures at the end of their retraction, well below the site of reconnection, consistent with previous analysis of AIA and EIS data showing a peak in the plasma temperature near the base of this particular sheet.
dc.relation.ispartofAstrophysical Journalen
dc.rightsCopyright © 2018. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at:
dc.subjectMagnetic reconnectionen
dc.subjectSun: coronal mass ejections (CMEs)en
dc.subjectSun: flaresen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.titleEvidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnectionen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record