St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

Thumbnail
View/Open
Hui_2017_SSI_Metal_oxideinteractions_AAM.pdf (1.478Mb)
Date
02/2018
Author
Hui, Jianing
Neagu, Dragos
Miller, David N.
Yue, Xiangling
Ni, Chengsheng
Irvine, John T.S.
Keywords
QD Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Enhancing the stability of introduced metal catalysts on oxide surfaces is a major issue for infiltrated anodes in Solid Oxide Cells (SOC) and other related catalysis field. Stoichiometric SrTiO3 (STO) and A-site cation deficient LaxSr1 − 3x/2TiO3 (LST) were compared to investigate the influence of stoichiometry upon the contact between metal and oxide, in order to improve the bonding of catalyst and substrate. Optimization of oxidizing and reducing temperatures for Ni infiltration processes was performed to get good nanoparticles distribution on the perovskite surface. Thermogravimetry (TG) and X-ray diffraction (XRD) analysis showed the formation of NiO, Ni after oxidation and reduction, respectively. Energy Dispersive Spectroscopy (EDS) on a Transmission Electron Microscopy (TEM) was employed to characterize the nickel nanoparticles on the LST surface. No obvious elemental transfer happened between Ni and LST. The TEM images showed Ni nanoparticles bonded well to the A-site deficient perovskite with large contact area. TG analysis in reducing atmosphere indicates interactions between metal-oxide interactions in deficient samples. This may improve the Ni distribution on perovskite surface and further control the growth of Ni particles when heated at extreme temperature.
Citation
Hui , J , Neagu , D , Miller , D N , Yue , X , Ni , C & Irvine , J T S 2018 , ' Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient La x Sr 1 − 3x/2 TiO 3 ' , Solid State Ionics , vol. 315 , pp. 126-130 . https://doi.org/10.1016/j.ssi.2017.12.016
Publication
Solid State Ionics
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.ssi.2017.12.016
ISSN
0167-2738
Type
Journal article
Rights
© 2017 Elsevier Ltd. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.ssi.2017.12.016
Description
The authors would like to thank EPSRC Platform (Grant EP/K015540/1) and the Royal Society for Wolfson Merit Award (WRMA 2012/R2) for funding. We also acknowledge support from China Scholarship Council (No. 201406690029).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16697

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter