St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exact dimensionality and projection properties of Gaussian multiplicative chaos measures

Thumbnail
View/Open
FalconerJinTAMSRev.pdf (480.5Kb)
Date
15/08/2019
Author
Falconer, Kenneth
Jin, Xiong
Keywords
QA Mathematics
T-NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Given a measure ν on a regular planar domain D, the Gaussian multiplicative chaos measure of ν studied in this paper is the random measure ^ν^ obtained as the limit of the exponential of the γ-parameter circle averages of the Gaussian free field on D weighted by ν. We investigate the dimensional and geometric properties of these random measures. We first show that if ν is a finite Borel measure on D with exact dimension α>0, then the associated GMC measure ^ν^ is nondegenerate and is almost surely exact dimensional with dimension α-γ2/2, provided γ2/2<α. We then show that if νt is a Hölder-continuously parameterized family of measures, then the total mass of ^νt^ varies Hölder-continuously with t, provided that γ is sufficiently small. As an application we show that if γ<0.28, then, almost surely, the orthogonal projections of the γ-Liouville quantum gravity measure ^ν^ on a rotund convex domain D in all directions are simultaneously absolutely continuous with respect to Lebesgue measure with Hölder continuous densities. Furthermore, ^ν^ has positive Fourier dimension almost surely.
Citation
Falconer , K & Jin , X 2019 , ' Exact dimensionality and projection properties of Gaussian multiplicative chaos measures ' , Transactions of the American Mathematical Society , vol. 372 , no. 4 , pp. 2921-2957 . https://doi.org/10.1090/tran/7776
Publication
Transactions of the American Mathematical Society
Status
Peer reviewed
DOI
https://doi.org/10.1090/tran/7776
ISSN
0002-9947
Type
Journal article
Rights
Copyright © 2018, American Mathematical Society. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1090/tran/7776
Description
Paper originally entitled 'Hölder continuity of the Liouville Quantum Gravity measure'
Collections
  • University of St Andrews Research
URL
https://www.ams.org/journals/tran/0000-000-00/S0002-9947-2019-07776-0/
http://arxiv.org/abs/1601.00556
URI
http://hdl.handle.net/10023/16688

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter