St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies of enzymes relevant to the biotransformation of fluorinated natural products

Thumbnail
View/Open
NouchaliBandaranayakaPhDThesis.pdf (7.922Mb)
Date
27/06/2018
Author
Bandaranayaka, Nouchali
Supervisor
O'Hagan, David
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis is focused on enzymes related to the biosynthetic pathway of fluorometabolite synthesis in S.cattleya. The first native fluorinating enzyme, fluorinase was isolated from a soil bacterium, Streptomyces cattleya in 2002. Fluorinase catalyses the reaction between S-adenosyl-L-methionine and inorganic fluoride to produce 5′-fluoro-5-deoxyadenosine (5′FDA) and L-methionine as the first step of the fluorometabolite biosynthetic pathway. Fluorinase has been an attractive tool for incorporating ¹⁸F into a limited number of substrates for applications in positron emission tomography (PET). This thesis describes a preparation of the fluorinase for PET, and then the production of [¹⁸F]-5-fluoro-5-deoxy- D-ribose ([¹⁸F]-FDR) via fluorinase mediated enzymatic synthesis. S. cattleya fluorinase has been the only fluorinase identified until recently when four more fluorinases have been identified by gene mining. These new fluorinase isolations are presented in the thesis. In addition this thesis describes the crystallisation of 5-deoxy-5-fluoro-D-ribose 1-phosphate isomerase (FDRPi), an aldose-ketose isomerase involved in the biosynthetic pathway of fluorometabolite biosynthesis in S.cattleya. Chapter 1 presents the background of this research focusing on the enzymes involved in the biosynthesis of the two fluorometabolites; fluoroacetate and 4-fluoro-L-threonine, produced by S.cattleya. Chapter 2 describes the development of a practical, ‘off the shelf’ method of producing [¹⁸F]-FDR in remote radiochemistry labs. Enzymes, fluorinase and nucleoside hydrolase, isolated from Trypanosoma vivax (TvNH) were freeze-dried in their buffers to produce a shelf stable, potentially portable kit, where rehydration on site, would then provide catalysts on demand for radiochemical synthesis of [¹⁸F]-FDR. This kit was practical enough to conduct a successful tumour imaging using a mouse model at Vrije University in Amsterdam. Chapter 3 presents the over-expression and purification of fluorinase gene product (FLA1) from a newly isolated soil bacterium Streptomyces sp. MA37. The gene was identified by sequence mining of the Streptomyces sp. MA37 genome. This fluorinase shared high homology to S.cattleya fluorinase and the flA1 was cloned into E.coli, over-expressed, purified, assayed and shown to be a fluorinase. The FlA1 was also crystallized and the structure solved. Chapter 4 describes the successful crystallisation of FDRPi, an enzyme involved in the fluorometabolite synthesis of S. cattleya. The FDRPi was over expressed, purified, crystallised and the structure was solved.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/16619

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter