St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A computational investigation of oxygen storage and migration in energy materials

Date
27/06/2018
Author
McInnes, Gregor David
Supervisor
Irvine, John T. S.
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis describes a computational investigation into the oxygen storage material copper doped ceria and electrolyte material Ge₅O(PO₄)₆ for use in Solid Oxide Fuel Cells. In Chapter 1, a background on fuel cells is given along with explanations and examples of different oxygen migration mechanisms. After this, a background on the materials Ge₅O(PO₄)₆ and copper doped ceria is given,. Chapter 2 presents background on the computational techniques used. This includes discussion of first principles techniques and an explanation of the CALPHAD method. Chapter 3 presents the detailed results of the investigation into copper doped ceria. This investigation concentrated on the stability of copper ceria as well as on the ionic makeup of the material. The main findings of this investigation are that Cu¹⁺ and Cu²⁺ ions can be doped into ceria with the maximum doping reaching 0.09 mole fraction Cu. In Chapter 4 the details of the computation investigation into Ge₅O(PO₄)₆ are given. This investigation looked at the possible oxygen migration pathways. From the findings of this investigation we were able to rule out several different possible pathways through the structure. Chapter 5 gives a brief overview of the findings of each of the projects and provides recommendations on future work that may be carried out on each of the systems. Appendix A provides supplementary data on the copper doped ceria project, specifically the coding of the thermodynamic database created during the project.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2020-09-17
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 17th September 2020
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/16578

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter