Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorArnold, R.
dc.contributor.authorJupp, P. E.
dc.contributor.authorSchaeben, H.
dc.date.accessioned2018-11-21T00:48:53Z
dc.date.available2018-11-21T00:48:53Z
dc.date.issued2018-05
dc.identifier.citationArnold , R , Jupp , P E & Schaeben , H 2018 , ' Statistics of ambiguous rotations ' , Journal of Multivariate Analysis , vol. 165 , pp. 73-85 . https://doi.org/10.1016/j.jmva.2017.10.007en
dc.identifier.issn0047-259X
dc.identifier.otherPURE: 251485759
dc.identifier.otherPURE UUID: 89579a1c-92ad-4940-97b9-e8a61c3b5aa8
dc.identifier.otherScopus: 85040620092
dc.identifier.otherORCID: /0000-0003-0973-8434/work/60195560
dc.identifier.otherWOS: 000428360200005
dc.identifier.urihttp://hdl.handle.net/10023/16511
dc.description.abstractThe orientation of a rigid object can be described by a rotation that transforms it into a standard position. For a symmetrical object the rotation is known only up to multiplication by an element of the symmetry group. Such ambiguous rotations arise in biomechanics, crystallography and seismology. We develop methods for analyzing data of this form. A test of uniformity is given. Parametric models for ambiguous rotations are presented, tests of location are considered, and a regression model is proposed. An example involving orientations of diopside crystals (which have symmetry of order 2) is used throughout to illustrate how our methods can be applied.
dc.language.isoeng
dc.relation.ispartofJournal of Multivariate Analysisen
dc.rights© 2017 Elsevier Ltd. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.jmva.2017.10.007en
dc.subjectFrameen
dc.subjectOrientationen
dc.subjectRegressionen
dc.subjectSymmetric arrayen
dc.subjectSymmetryen
dc.subjectTest of locationen
dc.subjectTest of uniformityen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titleStatistics of ambiguous rotationsen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.1016/j.jmva.2017.10.007
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-11-21


This item appears in the following Collection(s)

Show simple item record