Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorFraser, Jonathan MacDonald
dc.contributor.authorSaito, Kota
dc.contributor.authorYu, Han
dc.date.accessioned2018-11-02T00:48:19Z
dc.date.available2018-11-02T00:48:19Z
dc.date.issued2017-11-02
dc.identifier251246863
dc.identifier0b781cd1-73ff-42cc-80ab-361edc0b1f9f
dc.identifier000493552100008
dc.identifier85083968761
dc.identifier.citationFraser , J M , Saito , K & Yu , H 2017 , ' Dimensions of sets which uniformly avoid arithmetic progressions ' , International Mathematics Research Notices , vol. 2017 . https://doi.org/10.1093/imrn/rnx261en
dc.identifier.issn1073-7928
dc.identifier.otherORCID: /0000-0002-8066-9120/work/58285470
dc.identifier.urihttps://hdl.handle.net/10023/16374
dc.description.abstractWe provide estimates for the dimensions of sets in ℝ which uniformly avoid finite arithmetic progressions (APs). More precisely, we say F uniformly avoids APs of length k≥3 if there is an ϵ>0 such that one cannot find an AP of length k and gap length Δ>0 inside the ϵΔ neighbourhood of F. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of k and ϵ. In the other direction, we provide examples of sets which uniformly avoid APs of a given length but still have relatively large Hausdorff dimension. We also consider higher dimensional analogues of these problems, where APs are replaced with arithmetic patches lying in a hyperplane. As a consequence, we obtain a discretized version of a “reverse Kakeya problem:” we show that if the dimension of a set in ℝd is sufficiently large, then it closely approximates APs in every direction.
dc.format.extent12
dc.format.extent336917
dc.language.isoeng
dc.relation.ispartofInternational Mathematics Research Noticesen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccQAen
dc.titleDimensions of sets which uniformly avoid arithmetic progressionsen
dc.typeJournal articleen
dc.contributor.sponsorThe Leverhulme Trusten
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.identifier.doihttps://doi.org/10.1093/imrn/rnx261
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-11-02
dc.identifier.grantnumberRF-2016-500en


This item appears in the following Collection(s)

Show simple item record