Dimensions of equilibrium measures on a class of planar self-affine sets
View/ Open
Date
2020Funder
Grant ID
RF-2016-500
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We study equilibrium measures (Käenmäki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such measures are exact dimensional and the dimension satisfies the Ledrappier–Young formula, which gives an explicit expression for the dimension in terms of the entropy and Lyapunov exponents as well as the dimension of a coordinate projection of the measure. In particular, we do this by showing that the Käenmäki measure is equal to the sum of (the pushforwards) of two Gibbs measures on an associated subshift of finite type.
Citation
Fraser , J M , Jordan , T & Jurga , N 2020 , ' Dimensions of equilibrium measures on a class of planar self-affine sets ' , Journal of Fractal Geometry , vol. 7 , no. 1 , pp. 87–111 . https://doi.org/10.4171/JFG/85
Publication
Journal of Fractal Geometry
Status
Peer reviewed
ISSN
2308-1309Type
Journal article
Rights
© 2018, European Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.4171/JFG/85
Description
Funding: JMF was financially supported by a Leverhulme Trust Research Fellowship (RF-2016-500).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.