St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding a hydroformylation catalyst that produces branched aldehydes from alkyl alkenes

Thumbnail
View/Open
understandingbobphosacceptedpdf.pdf (4.904Mb)
Date
08/11/2017
Author
Dingwall, Paul
Fuentes, José A.
Crawford, Luke
Slawin, Alexandra Martha Zoya
Buehl, Michael
Clarke, Matthew L
Keywords
QD Chemistry
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This paper reports experimental and computational studies on the mechanism of a rhodium-catalysed hydroformylation that is selective for branched aldehyde products from unbiased alkene substrates. This highly unusual selectivity relies on a phospholane-phosphite ligand prosaically called BOBPHOS. Kinetic studies using in situ high pressure IR (HPIR) and the reaction progress kinetic analysis methodology suggested two steps in the catalytic cycle were involved as turnover determining. Negative order in CO and positive orders in alkene and H2 were found and the effect of hydrogen and carbon monoxide partial pressures on selectivity were measured. Labeling studies found rhodium hydride addition to the alkene to be largely irreversible. Detailed spectroscopic HPIR and NMR characterization of activated rhodium-hydrido dicarbonyl species were carried out. In the absence of H2, reaction of the rhodium-hydrido dicarbonyl with allylbenzene allowed further detailed spectroscopic characterization of four- and five-coordinate rhodium-acyl species. Under single-turnover conditions the ratios of branched to linear acyl species were preserved in the final ratios of aldehyde products. Theoretical investigations uncovered unexpected stabilizing CH-π interactions between the ligand and substrate which influenced the high branched selectivity by causing potentially low energy pathways to become unproductive. Energy span and degree of TOF control analysis strongly support experimental observations and mechanistic rationale. A three-dimensional quadrant model was built to represent the structural origins of regio- and enantioselectivity.
Citation
Dingwall , P , Fuentes , J A , Crawford , L , Slawin , A M Z , Buehl , M & Clarke , M L 2017 , ' Understanding a hydroformylation catalyst that produces branched aldehydes from alkyl alkenes ' , Journal of the American Chemical Society , vol. 139 , no. 44 , pp. 15921–15932 . https://doi.org/10.1021/jacs.7b09164
Publication
Journal of the American Chemical Society
Status
Peer reviewed
DOI
https://doi.org/10.1021/jacs.7b09164
ISSN
0002-7863
Type
Journal article
Rights
Copyright © 2017 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/jacs.7b09164
Description
The authors thank the EPSRC for funding (EP/M003868/1).
Collections
  • University of St Andrews Research
URL
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b09164
URI
http://hdl.handle.net/10023/16318

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter