Files in this item
A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology
Item metadata
dc.contributor.author | Fasiolo, Matteo | |
dc.contributor.author | Pya, Natalya | |
dc.contributor.author | Wood, Simon N. | |
dc.date.accessioned | 2018-10-17T09:30:12Z | |
dc.date.available | 2018-10-17T09:30:12Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Fasiolo , M , Pya , N & Wood , S N 2016 , ' A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology ' , Statistical Science , vol. 31 , no. 1 , pp. 96-118 . https://doi.org/10.1214/15-STS534 | en |
dc.identifier.issn | 0883-4237 | |
dc.identifier.other | PURE: 244461907 | |
dc.identifier.other | PURE UUID: cc7993bd-532e-404f-81bc-891b3038ffeb | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/1411.4564v2 | |
dc.identifier.other | Scopus: 84959449954 | |
dc.identifier.uri | http://hdl.handle.net/10023/16250 | |
dc.description | Most of this work was undertaken at the University of Bath, where M.F. was a Ph.D. student, and it was supported in part by EPSRC Grants EP/I000917 and EP/K005251/1. | en |
dc.description.abstract | Highly nonlinear, chaotic or near chaotic, dynamic models are important in fields such as ecology and epidemiology: for example, pest species and diseases often display highly nonlinear dynamics. However, such models are problematic from the point of view of statistical inference. The defining feature of chaotic and near chaotic systems is extreme sensitivity to small changes in system states and parameters, and this can interfere with inference. There are twomain classes ofmethods for circumventing these difficulties: information reduction approaches, such as Approximate Bayesian Computation or Synthetic Likelihood, and state space methods, such as Particle Markov chain Monte Carlo, Iterated Filtering or Parameter Cascading. The purpose of this article is to compare the methods in order to reach conclusions about how to approach inference with such models in practice. We show that neither class of methods is universally superior to the other. We show that state space methods can suffer multimodality problems in settings with low process noise or model misspecification, leading to bias toward stable dynamics and high process noise. Information reduction methods avoid this problem, but, under the correct model and with sufficient process noise, state space methods lead to substantially sharper inference than information reduction methods. More practically, there are also differences in the tuning requirements of different methods. Our overall conclusion is that model development and checking should probably be performed using an information reduction method with low tuning requirements, while for final inference it is likely to be better to switch to a state space method, checking results against the information reduction approach. | |
dc.format.extent | 23 | |
dc.language.iso | eng | |
dc.relation.ispartof | Statistical Science | en |
dc.rights | © Institute of Mathematical Statistics, 2016. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1214/15-STS534 | en |
dc.subject | Approximate bayesian computation | en |
dc.subject | Nonlinear dynamics | en |
dc.subject | Particle filters | en |
dc.subject | State space models | en |
dc.subject | Statistical ecology | en |
dc.subject | QA Mathematics | en |
dc.subject | Statistics and Probability | en |
dc.subject | Mathematics(all) | en |
dc.subject | Statistics, Probability and Uncertainty | en |
dc.subject | NDAS | en |
dc.subject.lcc | QA | en |
dc.title | A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. School of Mathematics and Statistics | en |
dc.identifier.doi | https://doi.org/10.1214/15-STS534 | |
dc.description.status | Peer reviewed | en |
dc.identifier.url | https://arxiv.org/abs/1411.4564 | en |
dc.identifier.grantnumber | EP/I000917/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.