Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHatit, Marine Z. C.
dc.contributor.authorReichenbach, Linus F.
dc.contributor.authorTobin, John M.
dc.contributor.authorVilela, Filipe
dc.contributor.authorBurley, Glenn A.
dc.contributor.authorWatson, Allan J. B.
dc.date.accessioned2018-10-11T09:30:09Z
dc.date.available2018-10-11T09:30:09Z
dc.date.issued2018-10-01
dc.identifier.citationHatit , M Z C , Reichenbach , L F , Tobin , J M , Vilela , F , Burley , G A & Watson , A J B 2018 , ' A flow platform for degradation-free CuAAC bioconjugation ' , Nature Communications , vol. 9 , 4021 . https://doi.org/10.1038/s41467-018-06551-0en
dc.identifier.issn2041-1723
dc.identifier.otherPURE: 255966388
dc.identifier.otherPURE UUID: 8d7cba95-e933-4308-be45-feda12bdf6e6
dc.identifier.otherScopus: 85054082814
dc.identifier.otherORCID: /0000-0002-1582-4286/work/56639187
dc.identifier.otherWOS: 000446113000023
dc.identifier.urihttps://hdl.handle.net/10023/16187
dc.descriptionWe thank Vapourtec for the copper reactors, the EPSRC UK National Mass Spectrometry Facility at Swansea University for analyses, the University of Strathclyde for PhD studentship (M.Z.C.H.), the Leverhulme Trust for a postdoctoral fellowship (L.F.R.; grant no. RPG-2014-001), and the BBSRC for funding (grant nos. BB/R006857/1, BB/N016378/1).en
dc.description.abstractThe Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a cornerstone method for the ligation of biomolecules. However, undesired Cu-mediated oxidation and Cu-contamination in bioconjugates limits biomedical utility. Here, we report a generic CuAAC flow platform for the rapid, robust, and broad-spectrum formation of discrete triazole bioconjugates. This process leverages an engineering problem to chemical advantage: solvent-mediated Cu pipe erosion generates ppm levels of Cu in situ under laminar flow conditions. This is sufficient to catalyze the CuAAC reaction of small molecule alkynes and azides, fluorophores, marketed drug molecules, peptides, DNA, and therapeutic oligonucleotides. This flow approach, not replicated in batch, operates at ambient temperature and pressure, requires short residence times, avoids oxidation of sensitive functional groups, and produces products with very low ppm Cu contamination.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.rightsCopyright © The Author(s) 2018. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectBDCen
dc.subject.lccQDen
dc.titleA flow platform for degradation-free CuAAC bioconjugationen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.identifier.doihttps://doi.org/10.1038/s41467-018-06551-0
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record