St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radical-enhanced acidity : why bicarbonate, carboxyl, hydroperoxyl, and related radicals are so acidic

Thumbnail
View/Open
REDShiftJPC17.pdf (369.1Kb)
Date
12/10/2017
Author
Walton, John C.
Keywords
QD Chemistry
NDAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Comparison of accepted pKa values of bicarbonate, carboxyl, and hydroperoxyl radicals, with those of models having the unpaired electron replaced by H atoms, implied the acidity of the radicals was greatly increased. A Density Functional Theory computational method of estimating pKas was developed and applied to a set of radicals designed to probe the phenomenon of radical-enhanced deprotonation (RED-shift) and its underlying causes. Comparison of the computed pKa values of 12 acid radicals to those of the corresponding model acids confirmed the intensified acidity of the title radicals and also pin-pointed the carboxy-ethynyl (HO2CC≡C•) and the carboxy-aminyl (HO2CNH•) radicals as having enhanced acidity. The underlying cause was found to be extensive charge distribution away from the anionic O atoms of the conjugate radical anions, coupled with spin density displaced toward these O atoms. Ethyne spacers, between the radical and carboxylate centers, transmitted the effect extremely efficiently such that measurable enhancement was detectable up to at least six alkyne units. The bicyclo[1.1.1]pent-1-yl-3-carboxylic acid radical also displayed enhanced acidity, but additional cage units drastically attenuated the effect. Nitroxide radicals with suitably situated carboxylic acid substituents also exhibited enhanced acidity. Several families of potentially persistent radicals with enhanced acidity were identified.
Citation
Walton , J C 2017 , ' Radical-enhanced acidity : why bicarbonate, carboxyl, hydroperoxyl, and related radicals are so acidic ' , Journal of Physical Chemistry A , vol. 121 , no. 40 , pp. 7761-7767 . https://doi.org/10.1021/acs.jpca.7b08081
Publication
Journal of Physical Chemistry A
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jpca.7b08081
ISSN
1089-5639
Type
Journal article
Rights
Copyright © 2017 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1021/acs.jpca.7b08081
Description
J.C.W. thanks EaStCHEM for financial support.
Collections
  • University of St Andrews Research
URL
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.7b08081
URI
http://hdl.handle.net/10023/16032

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter