St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-similar approach for rotating magnetohydrodynamic solar and astrophysical structures

Thumbnail
View/Open
Luna_2018_ApJ_863_147.pdf (1.994Mb)
Date
20/08/2018
Author
Luna, M.
Priest, E.
Moreno-Insertis, F.
Keywords
Magnetic fields
Magnetohydrodynamic (MHD)
Plasmas
Sun: atmosphere
Sun: magnetic fields
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
Rotating magnetic structures are common in astrophysics, from vortex tubes and tornadoes in the Sun all the way to jets in different astrophysical systems. The physics of these objects often combine inertial, magnetic, gas pressure, and gravitational terms. Also, they often show approximate symmetries that help simplify the otherwise rather intractable equations governing their morphology and evolution. Here we propose a general formulation of the equations assuming axisymmetry and a self-similar form for all variables: in spherical coordinates ( r , θ , φ ), the magnetic field and plasma velocity are taken to be of the form B = f(θ)/rn and v = g(θ)/rm, with corresponding expressions for the scalar variables like pressure and density. Solutions are obtained for potential, force-free, and non-force-free magnetic configurations. Potential field solutions can be found for all values of n . Nonpotential force-free solutions possess an azimuthal component Bφ and exist only for n ≥ 2; the resulting structures are twisted and have closed field lines but are not collimated around the system axis. In the non-force-free case, including gas pressure, the magnetic field lines acquire an additional curvature to compensate for an outward pointing pressure gradient force. We have also considered a pure rotation situation with no gravity, in the zero- β limit: the solution has cylindrical geometry and twisted magnetic field lines. The latter solutions can be helpful in producing a collimated magnetic field structure; but they exist only when n < 0 and m < 0: for applications they must be matched to an external system at a finite distance from the origin.
Citation
Luna , M , Priest , E & Moreno-Insertis , F 2018 , ' Self-similar approach for rotating magnetohydrodynamic solar and astrophysical structures ' , Astrophysical Journal , vol. 863 , no. 2 , 147 . https://doi.org/10.3847/1538-4357/aad093
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/1538-4357/aad093
ISSN
0004-637X
Type
Journal article
Rights
© 2018. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.3847/1538-4357/aad093
Description
Support by the Spanish Ministry of Economy and Competitiveness through project AYA2014-55078-P is acknowledged. M.L. also acknowledges support from the International Space Science Institute (ISSI) to the Team 374 on “Solving the Prominence Paradox” led by Nicolas Labrosse.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/15963

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter