St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The relation between stellar magnetic field geometry and chromospheric activity cycles - II The rapid 120-day magnetic cycle of τ Bootis

Thumbnail
View/Open
Jeffers_2018_MNRAS_activitycycles_FinalPubVersion.pdf (1.119Mb)
Date
01/10/2018
Author
Jeffers, S. V.
Mengel, M.
Moutou, C.
Marsden, S. C.
Barnes, J. R.
Jardine, M. M.
Petit, P.
Schmitt, J. H. M. M.
See, V.
Vidotto, A. A.
BCool Collaboration
Keywords
Stars: activity
Stars: individual: (τ Boo)
Stars: magnetic field
Stars: solar-type
Starspots
Techniques: polarimetric
QC Physics
QB Astronomy
Astronomy and Astrophysics
Space and Planetary Science
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper, we aim to monitor the evolution of τ Boo's large-scalemagnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with τ Boo's 120-day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that τ Boo has a very fast magnetic cycle of only 240 days. At activity maximum τ Boo's large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished.
Citation
Jeffers , S V , Mengel , M , Moutou , C , Marsden , S C , Barnes , J R , Jardine , M M , Petit , P , Schmitt , J H M M , See , V , Vidotto , A A & BCool Collaboration 2018 , ' The relation between stellar magnetic field geometry and chromospheric activity cycles - II The rapid 120-day magnetic cycle of τ Bootis ' , Monthly Notices of the Royal Astronomical Society , vol. 479 , no. 4 , pp. 5266-5271 . https://doi.org/10.1093/mnras/sty1717
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/sty1717
ISSN
0035-8711
Type
Journal article
Rights
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1093/mnras/sty1717
Description
SJ acknowledges support from the German Science Foundation (DFG) Research Unit FOR2544 ‘Blue Planets around Red Stars’, project JE 701/3-1. VS acknowledges funding fromt the European Research Council (ERC) under the European Unions Horizon 2020 research and innovtion programme (grant agreement No 682393 AWESoMeStars).
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1805.09769
URI
http://hdl.handle.net/10023/15927

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter