The University of St Andrews

Research@StAndrews:FullText >
University of St Andrews Research >
University of St Andrews Research >
University of St Andrews Research >

Please use this identifier to cite or link to this item:
View Statistics

Files in This Item:

File Description SizeFormat
Barker2005-PlosCompBiol1-Predicting.pdf303.72 kBAdobe PDFView/Open
Title: Predicting functional gene links from phylogenetic-statistical analyses of whole genomes
Authors: Barker, Daniel
Pagel, M
Keywords: QH301 Biology
Issue Date: Jun-2005
Citation: Barker , D & Pagel , M 2005 , ' Predicting functional gene links from phylogenetic-statistical analyses of whole genomes ' PLoS Computational Biology , vol 1 , no. 1 , e3 . , 10.1371/journal.pcbi.0010003
Abstract: An important element of the developing field of proteomics is to understand protein-protein interactions and other functional links amongst genes. Across-species correlation methods for detecting functional links work on the premise that functionally linked proteins will tend to show a common pattern of presence and absence across a range of genomes. We describe a maximum likelihood statistical model for predicting functional gene linkages. The method detects independent instances of the correlated gain or loss of pairs of proteins on phylogenetic trees, reducing the high rates of false positives observed in conventional across-species methods that do not explicitly incorporate a phylogeny. We show, in a dataset of 10,551 protein pairs, that the phylogenetic method improves by up to 35% on across-species analyses at identifying known functionally linked proteins. The method shows that protein pairs with at least two to three correlated events of gain or loss are almost certainly functionally linked. Contingent evolution, in which one gene's presence or absence depends upon the presence of another, can also be detected phylogenetically, and may identify genes whose functional significance depends upon its interaction with other genes. Incorporating phylogenetic information improves the prediction of functional linkages. The improvement derives from having a lower rate of false positives and from detecting trends that across-species analyses miss. Phylogenetic methods can easily be incorporated into the screening of large-scale bioinformatics datasets to identify sets of protein links and to characterise gene networks.
Version: Publisher PDF
Description: Research supported by BBSRC Grants 19848 and 14980 (MP)
Status: Peer reviewed
ISSN: 1553-734X
Type: Journal article
Rights: © 2005 Barker and Pagel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Appears in Collections:University of St Andrews Research
Biology Research

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)