St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity

Thumbnail
View/Open
Waldherr_2018_NatComm_Bosoniccondensation_CC.pdf (962.6Kb)
Date
16/08/2018
Author
Waldherr, Max
Lundt, Nils
Klaas, Martin
Betzold, Simon
Wurdack, Matthias
Baumann, Vasilij
Estrecho, Eliezer
Nalitov, Anton
Cherotchenko, Evgenia
Cai, Hui
Ostrovskaya, Elena A.
Kavokin, Alexey
Tongay, Sefaattin
Klembt, Sebastian
Höfling, Sven
Schneider, Christian
Funder
EPSRC
Grant ID
EP/M025330/1
Keywords
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.
Citation
Waldherr , M , Lundt , N , Klaas , M , Betzold , S , Wurdack , M , Baumann , V , Estrecho , E , Nalitov , A , Cherotchenko , E , Cai , H , Ostrovskaya , E A , Kavokin , A , Tongay , S , Klembt , S , Höfling , S & Schneider , C 2018 , ' Observation of bosonic condensation in a hybrid monolayer MoSe 2 -GaAs microcavity ' , Nature Communications , vol. 9 , 3286 . https://doi.org/10.1038/s41467-018-05532-7
Publication
Nature Communications
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41467-018-05532-7
ISSN
2041-1723
Type
Journal article
Rights
© The Author(s) 2018. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
C.S. acknowledges support by the ERC (Project unLiMIt-2D), and the DFG within the Project SCHN1376 3-1. The Würzburg group acknowledges support by the State of Bavaria. A.N. and E.C. acknowledge the support from the megagrant 14.Y26.31.0015 and Goszadanie no. 3.2614.2017/4.6 of the Ministry of Education and Science of Russian Federation. A.V.K. acknowledges the support from the St-Petersburg State University in framework of the project 11.34.2.2012. S.H. and A.V.K. are grateful for funding received within the EPSRC Hybrid Polaritonics programme grant (EP/M025330/1). S.K. acknowledges the European Commission for the H2020 Marie Skłodowska-Curie Actions fellowship (Topopolis). S.T acknowledges support from NSF DMR 1838443 and NSF DMR 1552220.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/15832

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter