St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolution of the transverse density structure of oscillating coronal loops inferred by forward modelling of EUV intensity

Thumbnail
View/Open
Goddard_2018_AJ_EUVintensity_AAM.pdf (12.79Mb)
Date
22/08/2018
Author
Goddard, Christopher Rhys
Antolin, Patrick
Pascoe, David J.
Funder
Science & Technology Facilities Council
Science & Technology Facilities Council
Grant ID
ST/K000950/1
ST/R004285/1
Keywords
Sun: corona
Sun: oscillations
Methods: numerical
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Recent developments in the observation and modelling of kink oscillations of coronal loops have led to heightened interest over the last few years. The modification of the Transverse Density Profile (TDP) of oscillating coronal loops by non-linear effects, in particular the Kelvin-Helmholtz Instability (KHI), is investigated. How this evolution may be detected is established, in particular, when the KHI vortices may not be observed directly. A model for the loop's TDP is used which includes a finite inhomogeneous layer and homogeneous core, with a linear transition between them. The evolution of the loop's transverse intensity profile from numerical simulations of kink oscillations is analysed. Bayesian inference and forward modelling techniques are applied to infer the evolution of the TDP from the intensity profiles, in a manner which may be applied to observations. The strongest observational evidence for the development of the KHI is found to be a widening of the loop's inhomogeneous layer, which may be inferred for sufficiently well resolved loops, i.e > 15 data points across the loop. The main signatures when observing the core of the loop (for this specific loop model) during the oscillation are: a widening inhomogeneous layer, decreasing intensity, an unchanged radius, and visible fine transverse structuring when the resolution is sufficient. The appearance of these signatures are delayed for loops with wider inhomogeneous layers, and quicker for loops oscillating at higher amplitudes. These cases should also result in stronger observational signatures, with visible transverse structuring appearing for wide loops observed at SDO/AIA resolution.
Citation
Goddard , C R , Antolin , P & Pascoe , D J 2018 , ' Evolution of the transverse density structure of oscillating coronal loops inferred by forward modelling of EUV intensity ' , Astrophysical Journal , vol. 863 , 167 . https://doi.org/10.3847/1538-4357/aad3cc
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/1538-4357/aad3cc
ISSN
0004-637X
Type
Journal article
Rights
© 2018, American Astronomical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.3847/1538-4357/aad3cc
Description
This work was supported by the European Research Council (ERC) under the SeismoSun Research Project No. 321141 (CRG, DJP) and by the British Council via the Institutional Links Programme (Project 277352569 - Seismology of Solar Coronal Active Regions) (CRG). DJP has received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 724326). P.A. has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1), the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214) and his STFC Ernest Rutherford Fellowship (grant agreement No. ST/R004285/1).
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1808.03476v1
URI
http://hdl.handle.net/10023/15816

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter