Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMoran, Robert F.
dc.contributor.authorDawson, Daniel M.
dc.contributor.authorAshbrook, Sharon E.
dc.date.accessioned2018-08-12T23:33:25Z
dc.date.available2018-08-12T23:33:25Z
dc.date.issued2017
dc.identifier.citationMoran , R F , Dawson , D M & Ashbrook , S E 2017 , ' Exploiting NMR spectroscopy for the study of disorder in solids ' , International Reviews in Physical Chemistry , vol. 36 , no. 1 , pp. 39-115 . https://doi.org/10.1080/0144235X.2017.1256604en
dc.identifier.issn0144-235X
dc.identifier.otherPURE: 247294501
dc.identifier.otherPURE UUID: 5ba7898b-f75b-4828-b2b0-0c3b149bba06
dc.identifier.otherScopus: 85014936303
dc.identifier.otherWOS: 000395783000002
dc.identifier.urihttps://hdl.handle.net/10023/15807
dc.description.abstractAlthough the solid state is typically characterised by inherent periodicity, many interesting physical and chemical properties of solids arise from a variation in this, i.e.,changes in the nature of the atom occupying a particular site in a crystal structure or variation in the position of an atom (or group of atoms) in different parts of a structure, or variation as a function of time. This lack of long-range order poses significant challenges,not just for the characterisation of the structure of disordered materials, but also simply for its description. The sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local, atomic-scale environment, without the requirement for long-range order, makes it a powerful tool for the study of disorder in the solid state. Information on the number and type(s) of coordinating atoms or through-space and through-bond connectivity between atomic species enables the construction of a detailed picture of the structure. After a brief description of the background theory of NMR spectroscopy, and the experimental methods employed, we will describe the effects of disorder on NMR spectra and the use of calculations to help interpret experimental measurements. We will then review a range of applications to different types of disordered materials, including oxides and ceramics,minerals, porous materials, biomaterials, energy materials, pharmaceuticals, polymers and glasses. We will discuss the most successful approaches for studying different materials,and illustrate the type of information available and the structural insight gained.
dc.language.isoeng
dc.relation.ispartofInternational Reviews in Physical Chemistryen
dc.rights© 2017 Informa UK Limited, trading as Taylor & Francis Group. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1080/0144235X.2017.1256604en
dc.subjectSolid-stateen
dc.subjectNRM spectroscopyen
dc.subjectDisordered materialsen
dc.subjectDFT calculationsen
dc.subjectInorganic solidsen
dc.subjectQD Chemistryen
dc.subjectTP Chemical technologyen
dc.subject.lccQDen
dc.subject.lccTPen
dc.titleExploiting NMR spectroscopy for the study of disorder in solidsen
dc.typeJournal itemen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1080/0144235X.2017.1256604
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-08-13
dc.identifier.grantnumber614290 - EXONMRen
dc.identifier.grantnumberWM150021en


This item appears in the following Collection(s)

Show simple item record