Show simple item record

Files in this item


Item metadata

dc.contributor.authorBakoz, Andrei P.
dc.contributor.authorLiles, Alexandros A.
dc.contributor.authorGonzalez-Fernandez, Alfredo A.
dc.contributor.authorHabruseva, Tatiana
dc.contributor.authorHu, Changyu
dc.contributor.authorViktorov, Evgeny A.
dc.contributor.authorHegarty, Stephen P.
dc.contributor.authorO’Faolain, Liam
dc.identifier.citationBakoz , A P , Liles , A A , Gonzalez-Fernandez , A A , Habruseva , T , Hu , C , Viktorov , E A , Hegarty , S P & O’Faolain , L 2018 , ' Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector ' , Light: Science & Applications , vol. 7 , 39 .
dc.identifier.otherRIS: urn:B7AF539BEACB3CBCCDF7327BCB8ADF28
dc.identifier.otherRIS: Bakoz2018
dc.descriptionThis work was supported by the Science Foundation Ireland under Grants SFI12/RC/2276 and 16/ERCS/3838, Engineering and Physical Sciences Research Council (EPSRC) (doctoral grant EP/L505079/1 and equipment grant EP/L017008/1); European Research Council (ERC) (Starting Grant 337508); and Scottish Enterprise.en
dc.description.abstractThe need for miniaturized, fully integrated semiconductor lasers has stimulated significant research efforts into realizing unconventional configurations that can meet the performance requirements of a large spectrum of applications, ranging from communication systems to sensing. We demonstrate a hybrid, silicon  photonics-compatible photonic crystal (PhC) laser architecture that can be used to implement cost-effective, high-capacity light sources, with high side-mode suppression ratio and milliwatt output output powers. The emitted wavelength is set and controlled by a silicon PhC cavity-based reflective filter with the gain provided by a III–V-based reflective semiconductor optical amplifier (RSOA). The high power density in the laser cavity results in a significant enhancement of the nonlinear absorption in silicon in the high Q-factor PhC resonator. The heat generated in this manner creates a tuning effect in the wavelength-selective element, which can be used to offset external temperature fluctuations without the use of active cooling. Our approach is fully compatible with existing fabrication and integration technologies, providing a practical route to integrated lasing in wavelength-sensitive schemes.
dc.relation.ispartofLight: Science & Applicationsen
dc.subjectQC Physicsen
dc.titleWavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflectoren
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Microphotonics and Photonic Crystals Groupen
dc.description.statusPeer revieweden
dc.identifier.grantnumber337508 337508en

This item appears in the following Collection(s)

Show simple item record