Optical binding of two cooled micro-gyroscopes levitated in vacuum
Date
20/08/2018Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Coupling between mesoscopic particles levitated in vacuum is a prerequisite for the realization of a large-scale array of particles in an underdamped environment as well as potential studies at the classical–quantum interface. Here, we demonstrate for the first time, to the best of our knowledge, optical binding between two rotating microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation determined by the center-of-mass and the relative positions of the two-particle system. The inter-particle coupling, as a consequence of optical binding, removes the degeneracy of the normal mode frequencies, which is in good agreement with theory. We further demonstrate that the optically bound array of rotating microparticles retains their optical coupling during gyroscopic cooling, and exhibits cooperative motion whose center-of-mass is stabilized.
Citation
Arita , Y , Wright , E M & Dholakia , K 2018 , ' Optical binding of two cooled micro-gyroscopes levitated in vacuum ' , Optica , vol. 5 , no. 8 , pp. 910-917 . https://doi.org/10.1364/OPTICA.5.000910
Publication
Optica
Status
Peer reviewed
ISSN
2334-2536Type
Journal article
Rights
Copyright the Authors 2018. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Description
The authors acknowledge funding from the UK Engineering and Physical Sciences Research Council (EPSRC) Grants EP/J01771X/1 and EP/030017/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.