St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material

Thumbnail
View/Open
Nature_Photonics_AAM.pdf (5.845Mb)
Date
02/2018
Author
Alam, M. Zahirul
Schulz, Sebastian Andreas
Upham, Jeremy
De Leon, Israel
Boyd, Robert W.
Keywords
QC Physics
T Technology
NDAS
BDC
R2C
Metadata
Show full item record
Abstract
The size and operating energy of a nonlinear optical device are fundamentally constrained by the weakness of the nonlinear optical response of common materials1. Here, we report that a 50-nm-thick optical metasurface made of optical dipole antennas coupled to an epsilon-near-zero material exhibits a broadband (∼400 nm bandwidth) and ultrafast (recovery time less than 1 ps) intensity-dependent refractive index n2 as large as −3.73 ± 0.56 cm2 GW−1. Furthermore, the metasurface exhibits a maximum optically induced refractive index change of ±2.5 over a spectral range of ∼200 nm. The inclusion of low-Q nanoantennas on an epsilon-near-zero thin film not only allows the design of a metasurface with an unprecedentedly large nonlinear optical response, but also offers the flexibility to tailor the sign of the response. Our technique removes a longstanding obstacle in nonlinear optics: the lack of materials with an ultrafast nonlinear contribution to refractive index on the order of unity. It consequently offers the possibility to design low-power nonlinear nano-optical devices with orders-of-magnitude smaller footprints.
Citation
Alam , M Z , Schulz , S A , Upham , J , De Leon , I & Boyd , R W 2018 , ' Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material ' , Nature Photonics , vol. 12 , no. 2 , pp. 79-83 . https://doi.org/10.1038/s41566-017-0089-9
Publication
Nature Photonics
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41566-017-0089-9
ISSN
1749-4885
Type
Journal article
Rights
© 2018, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1038/s41566-017-0089-9
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/15708

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter