St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nickel- and palladium-catalysed deprotonative cross-couplings

Thumbnail
View/Open
EnricoMarelliPhDThesis.pdf (6.287Mb)
Date
2017
Author
Marelli, Enrico
Supervisor
Nolan, Steven P.
Goss, Rebecca J.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Transition metal-catalysed cross coupling chemistry is a valuable tool for synthetic organic chemistry, enabling the preparation of compounds of great interest. The catalytic metal of choice is usually palladium, which generally offer better performances in term of catalytic activity and easy handling. On the other hand, the use of nickel in this class of reactions is gaining attention, as it would provide more economically and environmentally sustainable processes. Deprotonative cross couplings are a subgroup of these reactions, in which the nucleophile is generated in situ by direct deprotonation of a (relatively) acidic C–H bond, for example those of an enolizable ketone or an imine. The reaction products often represent intermediates towards more complex molecular architectures, by virtue of the well-known carbonyl chemistry. The development of a Pd-catalysed methodology for the prototypical deprotonative coupling, the a-arylation of ketones, is reported in this thesis. It requires significantly lower catalyst loadings compared to previous reports, and displays good tolerance towards functionalised substrates. A related protocol for the intramolecular a-arylation of imines towards indoles was subsequently disclosed: as it requires low catalyst loadings and displays good scalability and simple setup, this methodology is a promising hit for industrial applications. The parallel development of nickel-catalysed protocols afforded an efficient method for the a-arylation of ketones, using chloroarenes as electrophile for the first time in the literature. The method was further optimised for the synthesis of an intermediate towards a commercial medicinally active compound. Building up on these findings, the first nickel-catalysed protocol for the deprotonative arylation of benzylaminederived imines was also developed. Last, the first aqueous palladium-catalysed protocol for the a-arylation of ketones was investigated. The method proved flexible, showing excellent functional group tolerance: compounds containing base-sensitive functional groups, halogenated small-molecule drugs, and Boc-protected amino acids were all suitable substrates.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/15603

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter