Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorBruce, Peter G.
dc.contributor.authorRoy, Stephen Campbell
dc.coverage.spatial189 p.en_US
dc.date.accessioned2018-07-18T10:32:16Z
dc.date.available2018-07-18T10:32:16Z
dc.date.issued1995
dc.identifier.urihttps://hdl.handle.net/10023/15526
dc.description.abstractAll solid state electrochemical cells capable of producing beams of lithium, sodium and potassium in ultrahigh vacuum have been developed and investigated. The evolution of alkali metal vapour has been demonstrated by deposition of the metal on a substrate during polarisation of the cell followed by ex-situ analysis of the metal using laser ionisation mass analysis (LIMA). The electrochemistry of alkali metal evolution from these unusual solid state cells has been investigated using cyclic voltammetry, chronoamperometry and AC impedance measurements at pressures of 10⁻³ mbar and 10⁻⁸ mbar (UHV). It has been found for all three sources that the mechanism at relatively high pressure involves the nucleation and growth of liquid alkali metals or compounds containing alkali metals on the working electrode prior to their evaporation. In UHV the mechanism for potassium and sodium emission appears to involve the transfer of atoms directly into the gas phase whereas lithium exhibits nucleation and growth. In order to obtain a more complete characterization of the electrochemical mechanisms a spectro-electrochemical technique involving the simultaneous mass spectrometric analysis of the evolved vapour under UHV conditions along with cyclic voltammetry was developed. The formation of p-type ZnSe is essential to the fabrication of blue light emitting diodes and semiconductor lasers but has long represented a major problem in optoelectronics. This work shows that the potassium source can be used to p-dope ZnSe during growth of the material by molecular beam epitaxy (MBE). Efforts directed to the preparation of n-type diamond using a lithium source in microwave enhanced chemical vapour deposition (MWECVD) apparatus have demonstrated that the source can introduce lithium to diamond, although full semiconductor characterization of this material has yet to be made.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccQD568.A6R7
dc.subject.lcshElectrochemistryen
dc.titleAlkali metal beams from solid state electrochemical sourcesen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record