St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies of mass transport in some poly(ethyleneoxide)-based polymer electrolytes

Thumbnail
View/Open
MartinHardgravePhDThesis.pdf (36.95Mb)
Date
1991
Author
Hardgrave, Martin Thomas
Supervisor
Vincent, Colin Angus
Funder
Science and Engineering Research Council (SERC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The work in this thesis relates to the transport of salt species in polymer electrolytes, which are solid ionic conductors in which mass transport is similar to that in liquids, rather than in ion-conducting glasses. A brief examination of some of the experimental techniques which have been used to study polymer electrolytes is given before examining in more detail the processes involved when these materials are polarised between non-blocking electrodes. A theoretical treatment is given for various models of polymer electrolytes, in particular polymer electrolytes containing free ions and polymer electrolytes containing free ions and ion-pairs. Non-ideality has been considered for the free ion model. Computer simulations of the free ion and ion-pair model predict that the steady-state current that these materials pass may be proportional to the applied potential difference for many tens of volts, in contrast with the free ion model, where the potential difference limit is of the order of millivolts. The use of the terms "transference number" and "transport number" is discouraged, because of the effect of the motion of uncharged species in practical systems. A new parameter, the current fraction, is defined for steady-state polarisation experiments. An experimental study of amorphous polymer electrolytes is described, in which electrolytes were polarised to steady-state using non-blocking electrodes. The application of the Hittorf technique to these materials has been demonstrated, with true transference numbers determined for some electrolytes. Conductivity and neutron scattering experiments suggest that the reported unusual conductivity behaviour of lithium triflate-based electrolytes does not exist or is not generally displayed.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/15518

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter