St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some new heterocyclic thermosets

Thumbnail
View/Open
NeilNicolsonPhDThesis.pdf (18.56Mb)
Date
1996
Author
Nicolson, Neil James
Supervisor
Smith, D. M.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The original aim of this project was to investigate the possibility of synthesising a novel polymer system combining the best features of cyanate ester resins and epoxy resins. Chapter 1 presents the historical background for both types of resin. The remaining three chapters describe attempts to achieve this aim by a) finding a cyanate ester that cures at a lower temperature than those in current commercial use (Chapter 2); b) using mixed epoxy and cyanate ester resins (Chapter 3); and c) designing chemically completely novel polymers from knowledge of the existing ones (Chapter 4). In Chapter 2 it was revealed that different cyanate esters cure at different temperatures, but that no obvious correlation exists between curing temperature and either steric or electronic effects of the ring substituents. The mixing of two dicyanate esters, one of which cures at a lower temperature than the other, leads to some reduction in the overall curing temperature required, but not sufficient to warrant further study at this stage. In Chapter 3 the usefulness of a previously proposed co-reaction between cyanate esters and epoxides was examined. Previous work in this area is full of inconsistencies that put many of the proposed conclusions in doubt. Further examination of the alleged co-reaction reveals that any such co-reaction is unpredictable, can vary significantly with reaction conditions and is in any case a minor reaction pathway by comparison with the self-reactions of the two individual reactants. It was therefore decided that further pursuit of this strategy was also likely to prove unrewarding in the short term. In Chapter 4 a study was made into the effects of including novel monomers in a standard epoxy resin system. These novel monomers had a cyanurate backbone with epoxide functionality, and can be cured at the lower temperatures of epoxy resins. Tests on the properties (mechanical, dielectric, water absorption, fracture toughness etc.) of these polymers were of a preliminary "scouting" nature, but are sufficiently promising to encourage further study.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/15293

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter