The University of St Andrews

Research@StAndrews:FullText >
University of St Andrews Research >
University of St Andrews Research >
University of St Andrews Research >

Please use this identifier to cite or link to this item:
This item has been viewed 4 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
BillantDritschelChomaz2006-JFuidMech561-Bending.pdf427.14 kBAdobe PDFView/Open
Title: Bending and twisting instabilities of columnar elliptical vortices in a rotating strongly stratified fluid
Authors: Billant, Paul
Dritschel, David Gerard
Chomaz, Jean-Marc
Keywords: Straight vortex filament
3-dimensional stability
QA Mathematics
Issue Date: 25-Aug-2006
Citation: Billant , P , Dritschel , D G & Chomaz , J-M 2006 , ' Bending and twisting instabilities of columnar elliptical vortices in a rotating strongly stratified fluid ' Journal of Fluid Mechanics , vol 561 , pp. 73-102 . , 10.1017/S0022112006000516
Abstract: In this paper, we investigate the three-dimensional stability of the Moore-Saffman elliptical vortex in a rotating stratified fluid. By means of an asymptotic analysis for long vertical wavelength perturbations and small Froude number, we study the effects of Rossby number, external strain, and ellipticity of the vortex on the stability of azimuthal modes m = 1 (corresponding to a bending instability) and m = 2 (corresponding to a twisting instability). In the case of a quasi-geostrophic fluid (small Rossby number), the asymptotic results are in striking agreement with previous numerical stability analyses even for vertical wavelengths of order one. For arbitrary Rossby number, the key finding is that the Rossby number has no effect on the domains of long-wavelength instability of these two modes: the two-dimensional or three-dimensional nature of the instabilities is controlled only by the background strain rate gamma and by the rotation rate Omega of the principal axes of the elliptical vortex relative to the rotating frame of reference. For the m = 1 mode, it is shown that when Omega < -gamma, the vortex is stable to any long-wavelength disturbances, when -gamma < Omega less than or similar to 0, two-dimensional perturbations are most unstable, when 0 less than or similar to Omega < gamma, long-wavelength three-dimensional disturbances are the most unstable, and finally when gamma < Omega, short-wavelength three-dimensional perturbations are the most unstable. Similarly, the m = 2 instability is two-dimensional or three-dimensional depending only on gamma and Omega, independent of the Rossby number. This means that if a long-wavelength three-dimensional instability exists for a given elliptical vortex in a quasi-geostrophic fluid, a similar instability should be observed for any other Rossby number, in particular for infinite Rossby number (strongly stratified fluids). This implies that the planetary rotation plays a minor role in the nature of the instabilities observed in rotating strongly stratified fluids. The present results for the azimuthal mode m = 1 suggest that the vortex-bending instabilities observed previously in quasi-geostrophic fluids (tall-column instability) and in strongly stratified fluids (zigzag instability) are fundamentally related.
Version: Publisher PDF
Description: This is a comprehensive analysis of the linear stability of columnar elliptical vortices subject to two-dimensional strain in a rotating, stratified fluid. It is the culmination of two lines of research, one started by Dritschel involving the tall-column instability, and another started by Billant and Chomaz involving the zigzag instability. Our joint work unifies these instabilities, and shows that they exist over a vast parameter space. This work represents over 7 years of collaborative effort.
Status: Peer reviewed
ISSN: 0022-1120
Type: Journal article
Rights: (c)2006 Cambridge University Press
Appears in Collections:University of St Andrews Research
Applied Mathematics Research

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)