St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The co-ordination and rearrangement of phosphorous mixed antihydrides of diphenylphosphinous and acrylic acids

Thumbnail
View/Open
DerekIrvinePhDThesis.pdf (51.84Mb)
Date
1990
Author
Irvine, Derek John
Supervisor
Cole-Hamilton, D. J. (David John)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The reactions of acrylic and vinylacetic acids with Ph₂PCl and Et₃N give Ph₂PO₂CCH=CH₂ (AAA) and Ph₂PO₂CCH₂CH=CH₂ (VAA) respectively. Both are found to undergo a facile rearrangment to give Ph₂PP(O)Ph₂ and AAA is also found to react with PPh₃ to give Ph₃P+-CH₂CH₂CO₂-. Their reaction (1 mole ligand to 1 mole Rh) with [(RhCl(1,₅ COD))₂], gives complexes of the form [(RhCl(L)₂], where L is AAA or VAA, in which the mixed anhydride ligands are bound via the phosphorus atom and the double bond. With AAA in a 1:2 mole reaction with [(RhCl(1,5 COD))₂] or a 1:1 mole reaction with [(RhCl(C₂H₄)₂)₂l, the major products are [(RhCl(AAA))₂ (Ph₂POPPh₂)] and [RhCl(AAA)₂], in which the mixed anhydride is bound as described above and the Ph₂POPPh₂ is a bridging ligand. Reaction (1:1) of AAA with [RhCl(PPh₃)₃] led to the formation of [RhCl(AAA)(PPh₃)]; anhydride coordination is as above and the phosphorus atoms are mutually trans. This complex is, however, found to revert back to [RhCl(PPh₃)₃] on standing. The (1:1) reaction with VAA produces [RhC1(PPh₃) (Ph₂PO₂CCH = CHMe)] (Ph₂PO₂CCH=CHMe = CAA), an example of a metal promoted double bond migration. Subsequent study shows that at ambient pressure and temperature this complex (with 3 butenoic, oleic and hexa-4-enoic acids) is involved in stoichiometric and not catalytic reactions. [RhCl(CAA)(PPh₃)] exhibits fluxionality at room temperature, 31p and 1H n.m.r, studies on this complex (₂₂₃-₂₆₃K) and on [Rh(CAA)(O₂CCH=CHMe)(PPh₃)] (₂₉₈K) has determined the fluxionality to be a fast exchange between the cis and trans forms and led to the calculation of the thermodynamic parameters for this process . The 1:₂ mole reaction of [RhCl(PPh₃)₃] and AAA gives lRhCl(PPh₃)(Ph₂POPPh₂)], which contains a chelate tetraphenyl diphosphoxane ligand (tpdp) formed via a metal promoted rearrangement of the AAA ligand. Subsequent reaction of this complex with TIPF₆ results in [Rh(PPh₃)₂(tpdp)][PF₆]. However if the [RhCl(PPh₃)(tpdp)] complex is not isolated, then the major product is [Rh(PPh₃)₃(Ph₃PCH₂CH₂CO₂)][PF₆]. Further tpdp complexes have been formed by refluxing Ph₂PP(O)Ph₂ with [RhCl(PPh₃)₃], [RuCl₂(PPh₃)₄] and [OsCl₂(PPh₃)₄] in THF. However the reaction of [RhCl(PPh₃)₃] with excess Ph₂PP(O)Ph₂ gives several products, one of which, namely [RhCl₂((PPh₂O)₂)H(PPh₂O)][HNEt₃], has been crystallographically characterised. The reaction (1:1) of [RuCl₂(PPh₃)₄] with Ph₂PO₂CCHCMe₂ (DAA) produces [RuCl₂(PPh₃)₂(DAA)], in which the mixed anhydride is bound via the phosphorus atom and the oxygen atom of the carbonyl group. The 1:1 mole reactions of CAA and AAA give similar complexes as minor products whilst the structure of the major product is, however, not known at this point in time. The 1:2 mole reaction was found to produce [RuCl₂(tpdp)(AAA)(PPh₃)] in which the mixed anhydride is bound via the phosphorus atom alone.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/14937

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter