St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rhodium catalysed hydrocarbonylation reactions

Thumbnail
View/Open
MichaelSimpsonPhDThesis.pdf (34.02Mb)
Date
1995
Author
Simpson, Michael Charles
Supervisor
Cole-Hamilton, D. J. (David John)
Funder
Science and Engineering Research Council (SERC)
BP Chemicals International Limited
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The one step hydrohydroxymethylation which can be used to transform C[sub]n alkenes into C [sub](n+1) alcohols has been explored for functionalised alkenes. The catalyst system used for this study was generated in situ from [Rh₂(OAc)₄], Pet₃, CO/ H₂ and ethanol. The main alkene investigated was 2-propen-1-ol, because of the potential to produce 1,4-butanediol by a novel route, which it indeed does in reasonable yield. Of interest the branched chain product was not the expected 2-methyl-1,3-propanediol, but 2-methylpropan-1-ol. 1,4-butanediol and 2-methylpropan-1-ol make up the majority of the final products, no aldehydic intermediates from the possible hydroformylation reaction were detected. A mechanism is proposed for the formation of 2-methylpropan-1-ol, the key steps of which are; protonation of a metal acyl species (on the acyl oxygen) to form a metal hydroxycarbene intermediate, dehydration of the hydroxycarbene species (conjugation being the driving force for this step), oxidative addition of hydrogen to the metal centre, a single hydrogen atom transfer to the carbene carbon, a sigma-pi allylic rearrangement of the substrate based ligand, followed by reductive elimination of a vinyl alcohol. This rapidly rearranges to 2-methylpropanal, which is hydrogenated by this system to give 2-methylpropan-1-ol. The mechanism was studied using 'black box' studies, recently developed deuterium labelling techniques (in one experiment 18 different isotopomers were formed, this technique could quantify them all) and some model studies. The effect on product distribution was examined by systematic variation of the reaction conditions and ligands. The reaction was expanded to other substrates such as propenyl halide, propenyl ethers, propenyl cyanide and ketones. Propenyl ethers gave similar reaction products to 2-propen-1-ol, whilst propenyl halides gave esters and ethers.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/14927

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter