St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The reactions of trimethyl tin hydride and trimethyl germanium hydride with halogenaoalkanes

Thumbnail
View/Open
DavidCoatesPhDThesis.pdf (20.28Mb)
Date
1972
Author
Coates, David A.
Funder
Science Research Council (Great Britain)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis deals with the abstraction of halogen atoms by trimethyl tin and trimethyl germanium radicals. Part I deals with the reactions of trimethyl tin radicals, produced by the photolysis of trimethyl tin hydride, in the presence of halogeno alkanes. Part II similarly deals with halogen abstraction using trimethyl germanium radicals produced by photolysis of trimethyl germanium hydride. A free radical chain mechanism appears to be operative in which a reaction scheme of the following form has been postulated. CH₃)₃M• + RX □(→┴(k₂) ) (CH₃)₃MX + R• R• + (CH₃)₃MH □(→┴(k₃) ) (CH₃)₃M•+ RH (CH₃)₃M• + (CH₃)₃M• □(→┴(k₄) ) (CH₃)₃M-M(CH₃)₃ (M = Sn or Ge) Evidence supporting this mechanism includes the dependence of the formation of the alkane on the ½Type equation here. power of the light intensity, the non-existence of any other termination products and the thermodynamics of the overall initiation and propagation steps. The observed trends in abstraction rates, Br > C1 > F and for a particular halide tertiary > secondary > primary, are predicted by bond energy data and confirmed experimentally. Breaking of the C-X bond is hence of major importance in determining the relative rates of abstraction. Polar effects have been discussed in terms of the four factors put forward by Tedder and the properties of these two nucleophilic radicals have been discussed in terms of Coulombic repulsive and attractive forces due to electron displacement in the transition state. The change in reactivity, following substitution by electron withdrawing groups at the reaction site, provides evidence for the reversal of polar effects in the transition state. Substitution with electron withdrawing groups decreases the activation energy for halogen abstraction by trimethyl tin and trimethyl germanium radicals. However for hydrogen abstraction by chlorine atoms or trifluoromethyl radicals the activation energy is increased.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/14908

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter