St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The solubility of gases in aqueous alcohols

Thumbnail
View/Open
RobertCargillPhDThesis.pdf (22.93Mb)
Date
1974
Author
Cargill, Robert Wilson
Supervisor
Morrison, T. J.
Johnstone, N. B. B.
Horrex, Charles
Metadata
Show full item record
Abstract
Extensive measurements have been made of the solubilities of the five gases helium, hydrogen, argon, oxygen, and carbon dioxide, in ethanol/water and in t-butanol/water mixtures over the whole of their concentration range, and throughout the temperature interval 4°C to 61°C. The measurements were carried out by the less usual flowing-film technique, which has been described in detail. It depends on the rapid establishment of equilibrium between a gas and its solvent while the liquid flows in a stable, thin film down the walls of a tube enclosing the gas. Results were reproducible, corroborated at relevant points by results obtained by other workers from the other more common mixing techniques. These solubility measurements were used to investigate the effects of foreign molecules on the structure of liquid water. To this end standard thermodynamic functions were calculated for each of the solubilities, having programmed a computer to carry out the arithmetic. Graphs were drawn to show the relationship of the functions to the gas dissolved, the alcohol mixed with the water, and the temperature. Most information was obtained from the enthalpy and entropy changes in the systems, and certain features of their dependence on the concentration of the alcohol. A mixture model for water structure has been described, and some aspects of it elucidated. The size of any molecule introduced into water has been shown to be an important factor in its influence on the water structure. A quantitative estimate has been made of the effect of temperature on the mole fraction of water molecules which are completely hydrogen-bonded, called "icebergs" or "clusters". An estimate has also been made of the relative amounts of different-sized clusters at various temperatures, and it has been concluded that as the temperature rises, there is a selective and progressive destruction of the largest clusters. Finally, a mechanism has been suggested for the stabilisation of clusters by added solute molecules, which depends on their efficiency at preventing thermal disruption of the clusters.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/14860

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter