St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The evolution of deep ocean chemistry and respired carbon in the Eastern Equatorial Pacific over the last deglaciation

Thumbnail
View/Open
delaFuente_2017_PP_DeepOceanChemistry_FinalPubVersion.pdf (2.481Mb)
Date
12/2017
Author
de la Fuente, Maria
Calvo, Eva
Skinner, Luke
Pelejero, Carles
Evans, David
Müller, Wolfgang
Povea, Patricia
Cacho, Isabel
Keywords
Marine carbon cycle
Carbonate chemistry
Ocean circulation
Glacial-interglacial cycles
Soft-tissue pump efficiency
Seafloor calcite dissolution
GE Environmental Sciences
GC Oceanography
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32−], and therefore [CO32−]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32−], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32−] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a “counteracting” mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be “sequestered” by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.
Citation
de la Fuente , M , Calvo , E , Skinner , L , Pelejero , C , Evans , D , Müller , W , Povea , P & Cacho , I 2017 , ' The evolution of deep ocean chemistry and respired carbon in the Eastern Equatorial Pacific over the last deglaciation ' , Paleoceanography and Paleoclimatology , vol. 32 , no. 12 , pp. 1371-1385 . https://doi.org/10.1002/2017PA003155
Publication
Paleoceanography and Paleoclimatology
Status
Peer reviewed
DOI
https://doi.org/10.1002/2017PA003155
ISSN
1944-9186
Type
Journal article
Rights
© 2017. American Geophysical Union. All Rights Reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1002/2017PA003155
Description
The authors acknowledge funding by the Spanish Ministry of Economy, Industry and Competitiveness through grants CTM2009-08849 (ACDC Project) and CTM2012-32017 (MANIFEST Project), by Generalitat de Catalunya through grant 2014SGR1029 (Marine Biogeochemistry and Global Change research group), and by NERC grant NE/L006421/1. Isabel Cacho thanks the ICREA Academia program from the Generalitat de Catalunya.
Collections
  • University of St Andrews Research
URL
http://onlinelibrary.wiley.com/doi/10.1002/2017PA003155/full#footer-support-info
URI
http://hdl.handle.net/10023/14366

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter