St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Substrate engineering for high quality emission of free and localized excitons from atomic monolayers in hybrid architectures

Thumbnail
View/Open
Hoefling_2017_Optica_HybridArchitectures_AAM.pdf (1.619Mb)
Date
13/06/2017
Author
Iff, Oliver
He, Yu-Ming
Lundt, Nils
Stoll, Sebastian
Stoll, Sebastian
Baumann, Vasilij
Höfling, Sven
Schneider, Christian
Keywords
QC Physics
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Atomic monolayers represent a novel class of materials to study localized and free excitons in two dimensions and to engineer optoelectronic devices based on their significant optical response. Here, we investigate the role of the substrate on the photoluminescense response of MoSe2 and WSe2 monolayers exfoliated either on SiO2 or epitaxially grown InGaP substrates. In the case of MoSe2, we observe a significant qualitative modification of the emission spectrum, which is widely dominated by the trion resonance on InGaP substrates. However, the effects of inhomogeneous broadening of the emission features are strongly reduced. Even more strikingly, in sheets of WSe2, we could routinely observe emission lines from localized excitons with linewidths down to the resolution limit of 70 μeV. This is in stark contrast to reference samples featuring WSe2 monolayers on SiO2 surfaces, where the emission spectra from localized defects are widely dominated by spectral diffusion and blinking behaviour. Our experiment outlines the enormous potential of III-V-monolayer hybrid architectures to obtain high quality emission signals from atomic monolayers, which are straight forward to integrate into nanophotonic and integrated optoelectronic devices.
Citation
Iff , O , He , Y-M , Lundt , N , Stoll , S , Stoll , S , Baumann , V , Höfling , S & Schneider , C 2017 , ' Substrate engineering for high quality emission of free and localized excitons from atomic monolayers in hybrid architectures ' , Optica , vol. 4 , no. 6 , pp. 669-673 . https://doi.org/10.1364/OPTICA.4.000669
Publication
Optica
Status
Peer reviewed
DOI
https://doi.org/10.1364/OPTICA.4.000669
ISSN
2334-2536
Type
Journal article
Rights
© 2017 Optical Society of America. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1364/OPTICA.4.000669
Description
We acknowledge financial support by the State of Bavaria and the European Research Council (Project Unlimit-2D).
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1702.03251
URI
http://hdl.handle.net/10023/14030

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter