St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dust in brown dwarfs and extra-solar planets : VI. Assessing seed formation across the brown dwarf and exoplanet regimes

Thumbnail
View/Open
1801.08482v1.pdf (11.95Mb)
Date
2018
Author
Lee, Graham K. H.
Blecic, Jasmina
Helling, Christiane
Keywords
Planets and satellites: atmospheres
Stars: atmospheres
Stars; brown dwarfs
Methods: numerical
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. The cloud formation process starts with the formation of seed particles, after which, surface chemical reactions grow or erode the cloud particles. If seed particles do not form, or are not available by another means, an atmosphere is unable to form a cloud complex and will remain cloud free. Aims. We aim to investigate which materials may form cloud condensation seeds in the gas temperature and pressure regimes (Tgas = 100-2000 K, pgas = 10− 8 -100 bar) expected to occur in planetary and brown dwarf atmospheres. Methods. We have applied modified classical nucleation theory which requires surface tensions and vapour pressure data for each solid species, which are taken from the literature. Input gas phase number densities are calculated assuming chemical equilibrium at solar metallicity. Results. We calculated the seed formation rates of TiO2[s] and SiO[s] and find that they efficiently nucleate at high temperatures of Tgas = 1000-1750 K. Cr[s], KCl[s] and NaCl[s] are found to efficiently nucleate across an intermediate temperature range of Tgas = 500-1000 K. We find CsCl[s] may serve as the seed particle for the water cloud layers in cool sub-stellar atmospheres. The nucleation rates of four low temperature ice species (Tgas = 100-250 K), H2O[s/l], NH3[s], H2S[s/l], and CH4[s], are also investigated for the coolest sub-stellar and planetary atmospheres. Conclusions. Our results suggest a possibly (Tgas , pgas ) distributed hierarchy of seed particle formation regimes throughout the sub- stellar and planetary atmospheric temperature-pressure space. With TiO2[s] providing seed particles for the most refractory cloud formation species (e.g. Al2O3[s], Fe[s], MgSiO3[s], Mg2SiO4[s]), Cr[s] providing the seed particles for MnS[s], Na2S[s], and ZnS[s] sulfides, and K/Na/Rb/Cs/NH4-Cl binding solid species providing the seed particles for H2O[s / l] and NH4-H2PO4/SH[s] clouds. A detached, high-altitude aerosol layer may form in some sub-stellar atmospheres from the nucleation process, dependent on the upper atmosphere temperature, pressure and availability of volatile elements. In order to improve the accuracy of the nucleation rate calculation, further research into the small cluster thermochemical data for each cloud species is warranted. The validity of these seed particle scenarios will be tested by applying it to more complete cloud models in the future.
Citation
Lee , G K H , Blecic , J & Helling , C 2018 , ' Dust in brown dwarfs and extra-solar planets : VI. Assessing seed formation across the brown dwarf and exoplanet regimes ' , Astronomy & Astrophysics , vol. 614 , A126 . https://doi.org/10.1051/0004-6361/201731977
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201731977
ISSN
0004-6361
Type
Journal article
Rights
© 2018, ESO. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1051/0004-6361/201731977
Description
GKHL and ChH highlight the financial support of the European community under the FP7 ERC starting grant 257431.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/1801.08482
URI
http://hdl.handle.net/10023/14019

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter