St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement

Thumbnail
View/Open
Cowan_2018_Potato_mop_up_PlantPhysiol_AAM.pdf (632.6Kb)
Date
06/03/2018
Author
Cowan, Graham H.
Roberts, Alison G.
Jones, Susan
Kumar, Pankaj
Kalyandurg, Pruthvi B.
Gil, Jose F.
Savenkov, Eugene I.
Hemsley, Piers A.
Torrance, Lesley
Keywords
NAC transcription factors
Nicotiana-benthamiana
Nucleolar localization
Plant transformation
Functional-analysis
Brassica-napus
Small RNAs
Protein
Phloem
Arabidopsis
QH301 Biology
QR355 Virology
NDAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Virus movement proteins facilitate virus entry into the vascular system to initiate systemic infection. The potato mop-top virus (PMTV) movement protein, TGB1, is involved in long-distance movement of both viral ribonucleoprotein complexes and virions. Here, our analysis of TGB1 interactions with host Nicotiana benthamiana proteins revealed an interaction with a member of the heavy metal-associated isoprenylated plant protein family, HIPP26, which acts as a plasma membrane-to-nucleus signal during abiotic stress. We found that knockdown of NbHIPP26 expression inhibited virus long-distance movement but did not affect cell-to-cell movement. Drought and PMTV infection up-regulated NbHIPP26 gene expression, and PMTV infection protected plants from drought. In addition, NbHIPP26 promoter-reporter fusions revealed vascular tissue-specific expression. Mutational and biochemical analyses indicated that NbHIPP26 subcellular localization at the plasma membrane and plasmodesmata was mediated by lipidation (S-acylation and prenylation), as nonlipidated NbHIPP26 was predominantly in the nucleus. Notably, coexpression of NbHIPP26 with TGB1 resulted in a similar nuclear accumulation of NbHIPP26. TGB1 interacted with the carboxyl-terminal CVVM (prenyl) domain of NbHIPP26, and bimolecular fluorescence complementation revealed that the TGB1-HIPP26 complex localized to microtubules and accumulated in the nucleolus, with little signal at the plasma membrane or plasmodesmata. These data support a mechanism where interaction with TGB1 negates or reverses NbHIPP26 lipidation, thus releasing membrane-associated NbHIPP26 and redirecting it via microtubules to the nucleus, thereby activating the drought stress response and facilitating virus long-distance movement.
Citation
Cowan , G H , Roberts , A G , Jones , S , Kumar , P , Kalyandurg , P B , Gil , J F , Savenkov , E I , Hemsley , P A & Torrance , L 2018 , ' Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement ' , Plant Physiology , vol. 176 , no. 3 , pp. 2052-2070 . https://doi.org/10.1104/pp.17.01698
Publication
Plant Physiology
Status
Peer reviewed
DOI
https://doi.org/10.1104/pp.17.01698
ISSN
0032-0889
Type
Journal article
Rights
Copyright © 2018, American Society of Plant Biologists. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1104/pp.17.01698
Description
The work of LT, GC, SJ and AR is funded by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division, PH by the BBSRC (grant BB/M024911/1) and The Royal Society and EIS by the Swedish Research Council Formas and the Carl Tryggers Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/13503

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter