St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling recovery in database systems

Thumbnail
View/Open
StephanScheuerlPhDThesis.pdf (31.55Mb)
Date
1998
Author
Scheuerl, S.
Supervisor
Morrison, Ronald
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The execution of modern database applications requires the co-ordination of a number of components such as: the application itself, the DBMS, the operating system, the network and the platform. The interaction of these components makes understanding the overall behaviour of the application a complex task. As a result the effectiveness of optimisations are often difficult to predict. Three techniques commonly available to analyse system behaviour are empirical measurement, simulation-based analysis and analytical modelling. The ideal technique is one that provides accurate results at low cost. This thesis investigates the hypothesis that analytical modelling can be used to study the behaviour of DBMSs with sufficient accuracy. In particular the work focuses on a new model for costing recovery mechanisms called MaStA and determines if the model can be used effectively to guide the selection of mechanisms. To verify the effectiveness of the model a validation framework is developed. Database workloads are executed on the flexible Flask architecture on different platforms. Flask is designed to minimise the dependencies between DBMS components and is used in the framework to allow the same workloads to be executed on a various recovery mechanisms. Empirical analysis of executing the workloads is used to validate the assumptions about CPU, I/O and workload that underlie MaStA. Once validated, the utility of the model is illustrated by using it to select the mechanisms that provide optimum performance for given database applications. By showing that analytical modelling can be used in the selection of recovery mechanisms, the work presented makes a contribution towards a database architecture in which the implementation of all components may be selected to provide optimum performance.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Computer Science Theses
URI
http://hdl.handle.net/10023/13482

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter