St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  •   St Andrews Research Repository
  • Computer Science (School of)
  • Computer Science
  • Computer Science Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A testbed for embedded systems

Thumbnail
View/Open
PeterBurgessPhDThesis.pdf (46.63Mb)
Date
1994
Author
Burgess, Peter
Supervisor
Livesey, Mike
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Testing and Debugging are often the most difficult phase of software development. This is especially true of embedded systems which are usually concurrent, have real-time performance and correctness constraints and which execute in the field in an environment which may not permit internal scrutiny of the software behaviour. Although good software engineering practices help, they will never eliminate the need for testing and debugging. This is because failings in the specification and design are often only discovered through testing and understanding these failings and how to correct them comes from debugging. These observations suggest that embedded software should be designed in a way which makes testing and debugging easier and that tools which support these activities are required. Due to the often hostile environment in which the finished embedded system will function, it is necessary to have a platform which allows the software to be developed and tested "in vitro". The Testbed system achieves these goals by providing dynamic modification and process migration facilities for use during development as well as powerful monitoring and background debugging support. These facilities are built on a basic run-time harness supporting an event-driven programming model with a global communication mechanism. This programming model is well suited to the reactive nature of embedded systems. The main research contributions of this work are in the areas of finding deadlock-free, path-optimal routings for networks and of dynamic modification with automated conversion of data which may include pointers.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Computer Science Theses
URI
http://hdl.handle.net/10023/13457

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter