St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Form, function and physics : the ecology of biogenic stabilisation

Thumbnail
View/Open
Paterson_2018_JSS_biogenicstabilisation_CC.pdf (1.315Mb)
Date
10/2018
Author
Paterson, David M.
Hope, Julie A.
Kenworthy, Joseph
Biles, Catherine L.
Gerbersdorf, Sabine U.
Funder
NERC
NERC
John Templeton Foundation
NERC
Grant ID
NE/J015644/1
NE/I02478X/1
60501
NE/N016009/1
Keywords
Biofilm
Biostabilisation
Ecosystem engineering
EPS
ETDC cycle
Metagenomics
GE Environmental Sciences
QH301 Biology
T-NDAS
Metadata
Show full item record
Abstract
Purpose:  The objective of this work is to better understand the role that biological mediation plays in the behaviour of fine sediments. This research is supported by developments in ecological theory recognising organisms as “ecosystem engineers” and associated discussion of “niche construction”, suggesting an evolutionary role for habitat modification by biological action. In addition, there is acknowledgement from engineering disciplines that something is missing from fine sediment transport predictions. Materials and methods:  Advances in technology continue to improve our ability to examine the small-scale 2D processes with large-scale effects in natural environments. Advanced molecular tools can be combined with state-of-the-art field and laboratory techniques to allow the discrimination of microbial biodiversity and the examination of their metabolic contribution to ecosystem function. This in turn can be related to highly resolved measurements and visualisation of flow dynamics. Results and discussion:  Recent laboratory and field work have led to a paradigm shift whereby hydraulic research has to embrace biology and biogeochemistry to unravel the highly complex issues around on fine sediment dynamics. Examples are provided illustrating traditional and more recent approaches including using multiple stressors in fully factorial designs in both the laboratory and the field to highlight the complexity of the interaction between biology and sediment dynamics in time and space. The next phase is likely to rely on advances in molecular analysis, metagenomics and metabolomics, to assess the functional role of microbial assemblages in sediment behaviour, including the nature and rate of polymer production by bacteria, the mechanism of their influence on sediment behaviour. Conclusions:  To fully understand how aquatic habitats will adjust to environmental change and to support the provision of various ecosystem services, we require a holistic approach. We must consider all aspects that control the distribution of sediment and the erosion-transport-deposition-consolidation cycle including biological and chemical processes, not just the physical. In particular, the role of microbial assemblages is now recognised as a significant factor deserving greater attention across disciplines.
Citation
Paterson , D M , Hope , J A , Kenworthy , J , Biles , C L & Gerbersdorf , S U 2018 , ' Form, function and physics : the ecology of biogenic stabilisation ' , Journal of Soils and Sediments , vol. 18 , no. 10 , pp. 3044–3054 . https://doi.org/10.1007/s11368-018-2005-4
Publication
Journal of Soils and Sediments
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11368-018-2005-4
ISSN
1439-0108
Type
Journal article
Rights
© The Author(s) 2018. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Description
JAH was supported by NERC award, COHBED (NE/1027223/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and from the Extended Evolutionary Synthesis Research Program funded by the John Templeton Foundation and by NERC awards NE/J015644/1and NE/N016009/1 - CBESS, and Blue Coast.MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/13311

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter