Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorPagano, Paolo
dc.contributor.authorPascoe, David James
dc.contributor.authorDe Moortel, Ineke
dc.date.accessioned2018-04-30T12:30:07Z
dc.date.available2018-04-30T12:30:07Z
dc.date.issued2018-08-29
dc.identifier252945932
dc.identifierf90ae8f9-b351-4c89-b7c1-87d1ff75b521
dc.identifier85049182860
dc.identifier85049182860
dc.identifier000442982300001
dc.identifier.citationPagano , P , Pascoe , D J & De Moortel , I 2018 , ' Contribution of phase-mixing of Alfvén waves to coronal heating in multi-harmonic loop oscillations ' , Astronomy & Astrophysics , vol. 616 , A125 . https://doi.org/10.1051/0004-6361/201732251en
dc.identifier.issn0004-6361
dc.identifier.otherORCID: /0000-0002-1452-9330/work/54181484
dc.identifier.urihttps://hdl.handle.net/10023/13263
dc.descriptionThis research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program ( grant agreement No. 647214). This work is supported by the European Research Council under the SeismoSun Research Project No. 321141 (DJP). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 724326). This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by a BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/K00087X/1, DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure.en
dc.description.abstractContext. Kink oscillations of a coronal loop are observed and studied in detail because they provide a unique probe into the structure of coronal loops through MHD seismology and a potential test of coronal heating through the phase-mixing of Alfvén waves . In particular, recent observations show that standing oscill ations of loops often involve also higher harmonics, beside the fundamental mode. The damping of these kink oscillations is explained by mode coupling with Alfvén waves. Aims. We investigate the consequences for wave-based coronal hea ting of higher harmonics and what coronal heating observational signatures we may use to infer the presence of higher harmonic kink oscillations. Methods. We perform a set of non-ideal MHD simulations where the damping of the kink oscillation of a flux tube via mode coupling is modelled. Our MHD simulation parameters are based on the seismological inversion of an observation for which the first three harmonics are detected. We study the phase-mixing of Alfvén waves that leads to the deposition of heat in the system, and we apply the seismological inversion techniques to the MHD simulation output. Results. We find that the heating due to phase-mixing of the Alfvén wave s triggered by the damping of the kink oscillation is relatively small, however we can illustrate i) how the heating location drifts due to the subsequent damping of lower order harmonics. We also address the role of the higher order harmonics and the width of the boundary shell in the energy deposition. Conclusions. We conclude that the coronal heating due to phase-mixing see ms not to provide enough energy to maintain the thermal structure of the solar corona even when multi-harmonics oscillations are included, and these oscillations play an inhibiting role in the development of smaller scale structures.
dc.format.extent12
dc.format.extent3011218
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.subjectMagnetohydrodynamics (MHD)en
dc.subjectSun: atmosphereen
dc.subjectSun: coronaen
dc.subjectSun: magnetic fieldsen
dc.subjectSun: oscillationsen
dc.subjectWavesen
dc.subjectQA Mathematicsen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectAstronomy and Astrophysicsen
dc.subjectSpace and Planetary Scienceen
dc.subjectNDASen
dc.subject.lccQAen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleContribution of phase-mixing of Alfvén waves to coronal heating in multi-harmonic loop oscillationsen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. School of Mathematics and Statisticsen
dc.identifier.doi10.1051/0004-6361/201732251
dc.description.statusPeer revieweden
dc.identifier.grantnumber647214en
dc.identifier.grantnumberST/N000609/1en


This item appears in the following Collection(s)

Show simple item record