St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanocone decorated ZnO microspheres exposing the (0001) plane and enhanced photocatalytic properties

Thumbnail
View/Open
Greer_ZnO_R.pdf (2.442Mb)
Date
07/07/2017
Author
Greer, Heather F.
Zhou, Wuzong
Zhang, Guan
Ménard, Hervé
Funder
EPSRC
EPSRC
Grant ID
EP/F019580/1
EP/K015540/1
Keywords
ZnO
Crystal growth
Electron microscopy
Photocatalysis
Polar surface
QD Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
ZnO spherical particles exposing only the (0001) planes were prepared by an established solvothermal method using a water‒ethylene glycol (EG) mix as a solvent. It was found that poorly crystalline nanoparticles formed first, followed by their aggregation into microspheres consisting of crystallites embedded in ethylene glycol and precursor molecules/ions. The grown up nanocrystallites and nanocones in the microspheres are all radially aligned. The possible formation mechanisms, in particular, the roles of water molecules, ethylene glycol and the intrinsic dipolar field of ZnO crystals, are discussed. X-ray photoelecton spectroscopy (XPS) experiments indicated the spherical particles were terminated solely by zinc atoms. Brunauer-Emmett-Teller (BET) measurements in conjunction with the degradation of methylene blue (MB) dye data demonstrated that the photocatalytic performance of the ZnO spheres depended on the growth time and was significantly improved compared to traditional ZnO nanorods. This study is a rare example which combines nanostructural characterisation of ZnO particles terminated with a single (0001) plane of known Zn2+-polarity with their photocatalytic performance.
Citation
Greer , H F , Zhou , W , Zhang , G & Ménard , H 2017 , ' Nanocone decorated ZnO microspheres exposing the (0001) plane and enhanced photocatalytic properties ' , Advanced Materials Interfaces , vol. 4 , no. 13 , 1601238 . https://doi.org/10.1002/admi.201601238
Publication
Advanced Materials Interfaces
Status
Peer reviewed
DOI
https://doi.org/10.1002/admi.201601238
ISSN
2196-7350
Type
Journal article
Rights
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/admi.201601238
Description
WZ thanks EPSRC for a platform grant (No. EP/K015540/1) and financial support to the Electron Microscopy Laboratory (No. EP/F019580/1)
Collections
  • University of St Andrews Research
URL
http://onlinelibrary.wiley.com/doi/10.1002/admi.201601238/full#footer-support-info
URI
http://hdl.handle.net/10023/13195

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter